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m However, they mostly used SAT solvers as a black-box

Question
Can we use SAT solvers in a white-box fashion?
(Tailor internals for a specific cryptographic problem)
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Outline of Contributions

Extending reasoning components for cryptographic problems
m CDCL(Crypto) framework ([NG19])
m Algebraic fault attack ([NHGG18])
m Differential cryptanalysis ([NG19])

Improving search heuristics
m Machine learning for search heuristics optimization problems
m Sequencing: Splitting heuristics ([NLFG20, NNS*17])
m Initializing: Variable order and value selection (Branching

heuristics) ([NDT*20])



Part 1: CDCL(Crypto) Solvers
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m When encoding a constraint into SAT, some higher level
properties might be lost

m Example: consider a pseudo-Boolean constraint
C:24+y<0,(z,y€{0,1})
m We trivially know: C' — Z and C' — .
m We can encode it using a half-adder
B sum < x @y, carry <> x Ay, and adding constraints
sum = 0, carry = 0.
m Resultant CNF: (—zV =) A (-2 Vy) A (2 Vy)
m No unit clause to propagate!
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Encoding and Propagation

Encoding Good for

Size © O
1z¢ Unit Progpagation

m Ideal: Having “good” propagation while keeping the encoding
small

m Extending propagation programmatically

m Using Programmatic SAT architecture [GOST12]
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Programmatic SAT

m Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T’) paradigm [NOTO06]

Programmatic callbacks analyze the partial assignment

Propagation callback

m Called after unit propagation

m Checks for implied literals that are missed by unit propagation
m Conflict analysis callback
m Called after propagation is done

m Checks if partial assignment cannot be extended to a full
solution

It can be seen as as solver for hybrid “CNF+C" constraints.
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Case Studies

m Applied this framework to two cryptographic problems:

m Algebraic Fault Attack on SHA-1 and SHA-256
m Differential Cryptanalysis of round-reduced version of SHA-256

11
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Algebraic Fault Analysis

m Implementation attack on a crypto function with an
embedded secret

® Inducing faults in the process of target function

m Pre-image: given H, find an m, s.t. SHA(m) = H.

m Very hard by itself.

m Collect extra information (constraints) about the secret m
m Inject fault in a target register: SHA'(m) = H'

m and repeat SHA"(m) = H"
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Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

m Each round mixes one word of message with state variables

m SHA-1(m) : frgo frgo---0o f1 0 fo(m)

m Slice the function into smaller number of rounds and inject
fault in between

m Focus on last 16 rounds
SHA-1(m) :frgo---o fesofez 0 --- 0 fi o fo(m)

m Model fault injection with a random value

H = fea.79(fo..63(mo0..63) ©di, mea..79)
N—

m Unaffected parts are just repeated. Abstract them away.

13



Algebraic Fault Analysis - Programmatic Approach

m Base SAT solver: MapleSAT
m Programmatic conflict analyzer
m Embedding the verification loop
m As soon as message word variables are set, they are ready to

be verified
m Early embedded check vs. Straightforward check after solving

completely
m Programmatic propagator

m Improving the propagation flow of multi-operand additions
m Generating reason clauses in each column addition when
output bits are missed

14



Algebraic Fault Analysis - Results

m Recovering SHA-256
message bits

m 14.3x speed-up on
average

m 17 fewer faults were
needed compared to the
previous works
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Part 2: Machine Learning based
Splitting Heuristics in Parallel SAT
Solvers




Overview
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Parallel SAT Solvers

Divide-and-Conquer Solvers

m Split the formula into several sub-formulas and solve them in
parallel
m Solvers share information

m Splitting the formula ¢:

m Pick a variable z in ¢
m Generate two sub-formulas ¢1 = ¢[—z] and ¢2 = ¢[z]
m Repeat for ¢; and ¢o

m ¢ is SAT: At least one solver returns SAT
m ¢ is UNSAT: All solvers return UNSAT
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Search Space Splitting

B¢ =N a2 AT AT
B Yo =¢pANxTa A5 AT
m g3 =¢ANT2 N3
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Search Space Splitting

B¢ =N a2 AT AT
B Yo =¢pANxTa A5 AT
B p3s =) AT2AT3

Question (Splitting Heuristic)

How to “divide” so the “conquer” becomes easier?

18
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Performance Metric

m Q: How do we know a splitting variable is good?
m We need to quantify the quality of a splitting variable.

m Performance metric: pm : ¢ x v =& R

Splitting Heuristic(¢) = argmin,cyars(s)1pm(9,v)}
m The ultimate goal is to minimize the runtime.

We define pm(¢,v): Total wall-clock runtime of solving ¢

when splitting once and solving ¢[v] and ¢[—wv] in parallel.
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Building the Splitting Heuristic

m Computing this pm needs knowing the runtime and status of
sub-formulas

m We don't know the runtime a priori
m We can build a machine learning model to predict runtime

m Predicting runtime is a very challenging task
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Building the Splitting Heuristic

Computing this pm needs knowing the runtime and status of

sub-formulas

We don’t know the runtime a priori

m We can build a machine learning model to predict runtime

Predicting runtime is a very challenging task

m Observation: We are looking for a minimum element in a list
of elements ordered by pm
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Learn to Rank

m Instead of predicting pm values for each item
m Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and w in formula ¢:

m Q: is v better than w for splitting ¢?

1, pm(‘bv Ui) < pm((b’ Uj)

PW(¢7 Ui7vj) = .
0, otherwise

21



Learning PW
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Learning PW

<Ffeat(¢)a erat(vi)> erat(vj)? label : (pm(¢7 Ui) < pm(¢) ’Uj))>

m Formula Features:
m #Variables, #Clauses, AvgVariableNodeDegree, - - -
m Variable Features:

m #inBinaryClause, #inTernaryClause, - - -
m CombinedLRB, PropagationRate, #Flips, - - -

m Feature selection:

m Addition pass: sorted by importance
m Deletion pass: sorted by computation time

m Random Forest: accuracy 80.72%
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Experimental Results - Cryptographic benchmark

m Framework: Painless

m Baseline: Painless-DC
w/ flip splitting
heuristic

m SHA-1 preimage

Time (s)
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Part 3: BMM-based Heuristic
Initialization




Overview
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Heuristic Initialization

m Branching heuristics: variable selection and value selection
(polarity)

25



Heuristic Initialization

m Branching heuristics: variable selection and value selection
(polarity)

m Usually look-back: make a decision based on the gathered
search statistics

25



Heuristic Initialization

m Branching heuristics: variable selection and value selection

(polarity)
m Usually look-back: make a decision based on the gathered

search statistics

m At the start of search: no statistics available

25



Heuristic Initialization

m Branching heuristics: variable selection and value selection

(polarity)
m Usually look-back: make a decision based on the gathered
search statistics

m At the start of search: no statistics available

m Goal: derive variable score and preferred value initial values,

s.t. the runtime is improved.
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Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True

Designed by Poupart, Jaini and Duan
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Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True
m Goal: learn a distribution that satisfies all of the clauses
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Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True
m Goal: learn a distribution that satisfies all of the clauses

Prior Posterior
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Heuristic Initialization

m Polarity
m BMM probabilities collectively represent an assignment
) False, P(x=1T)<0.5
m Polarity[x] =
True, Plx=T)>05
m Activity
m Give higher priority to variables that BMM is more confident
about its polarity

a Activityl] = 4+ @ =T), Plw=1) <05
o Pz =T), Pz =T)>05
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Experimental Results
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