Machine Learning based SAT Solvers
for Cryptanalysis

Saeed Nejati

UNIVERSITY OF

WATERLOO

April 2nd, 2020

Motivation

m SAT Solvers: Powerful general purpose search tools

Program Analysis

Automated Testing

Software/Hardware

Verification

Planning

Combinatorics

Motivation

m SAT Solvers: Powerful general purpose search tools

m Cryptanalysis: Searching a huge search space for a secret
key/value

Program Analysis | | Automated Testing Sl R

Verification

Planning Combinatorics

Motivation

m SAT/SMT solvers have increasingly been used in

Cryptographic tasks

m Finding cryptographic keys [Mas99, MMO00]

Modular root finding [FMMO03]
A collision attack [MZ06]
Preimage attacks [MS13], [Nos12]
Differential cryptanalysis [Pro16]
RX-differentials [Ashur2017], [DW17]

m
m
[
m
m
m Verification of cryptographic primitives [Tom15]

Motivation

m SAT/SMT solvers have increasingly been used in
Cryptographic tasks
m Finding cryptographic keys [Mas99, MMO00]
m Modular root finding [FMMO3]
m A collision attack [MZ06]
m Preimage attacks [MS13], [Nos12]
m Differential cryptanalysis [Pro16]
m RX-differentials [Ashur2017], [DW17]
m Verification of cryptographic primitives [Tom15]

m However, they mostly used SAT solvers as a black-box

Motivation

m SAT/SMT solvers have increasingly been used in
Cryptographic tasks
m Finding cryptographic keys [Mas99, MMO00]
m Modular root finding [FMMO3]
m A collision attack [MZ06]
m Preimage attacks [MS13], [Nos12]
m Differential cryptanalysis [Pro16]
m RX-differentials [Ashur2017], [DW17]
m Verification of cryptographic primitives [Tom15]

m However, they mostly used SAT solvers as a black-box

Question

Can we use SAT solvers in a white-box fashion?

Motivation

m SAT/SMT solvers have increasingly been used in
Cryptographic tasks
m Finding cryptographic keys [Mas99, MMO00]
m Modular root finding [FMMO3]
m A collision attack [MZ06]
m Preimage attacks [MS13], [Nos12]
m Differential cryptanalysis [Pro16]
m RX-differentials [Ashur2017], [DW17]
m Verification of cryptographic primitives [Tom15]

m However, they mostly used SAT solvers as a black-box

Question
Can we use SAT solvers in a white-box fashion?
(Tailor internals for a specific cryptographic problem)

Opening up a SAT solver

Input Formula

Pre-processing

{ Branching {Unit Propagation} Backjump }

All Variables

S Assigned?

Yes

Conflict Analysis Top Level? e UNSAT

[LG+18]

Opening up a SAT solver

Input Formula

Pre-processing

{ Branching [Unit Propagation] Backjump }

All Variables

S Assigned?

Yes

Conflict Analysis Top Level? e UNSAT

[LG+18]

Opening up a SAT solver

Input Formula

Pre-processing

{ Branching {Unit Propagation} Backjump }

All Variables

S Assigned?

Yes

Conflict Analysis Top Level? e UNSAT

[LG+18]

Opening up a SAT solver

SAT

Input Formula

Pre-processing

|

[Unit Propagation W

(

Branchin, Backjum

€ J {Programmatic PropagationJ { Jume
All Variables
Assigned? No

No
Yes
Conflict Analysis Top Level? Yes
vel?

Programmatic Conflict Analysis

UNSAT

Opening up a SAT solver

SAT

Input Formula

Pre-processing

BMM Initialization

[Unit Propagation W

Branching }

{Programmatic PropagationJ

(
L

Backjump

All Variables
Assigned?

Yes

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Opening up a SAT solver

SAT

Input Formula

Pre-processing

BMM Initialization

Branching

W [Unit Propagation W

J {Programmatic PropagationJ

(
L

Backjump

All Variables
Assigned?

Yes

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

— UNSAT

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

i
BMM Initialization

[Unit Propagation W

Branching }

(.
{Programmatic PropagationJ { Backjump

All Variables
Assigned?

SAT

No
No
Yes

Conflict Analysis

Programmatic Conflict Analysis
BMM Update

— UNSAT

Opening up a SAT solver

Input Formula

|

Divide-and-Conquer Master

i
Splittin Pre-processing
P € BMM Initialization

Unit Propagation W

{ Branching } [

{Programmatic PropagationJ

(
L

Backjump

l

All Variables
Assigned?

SAT

Yes

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

— UNSAT

Opening up a SAT solver

Input Formula

|

Divide-and-Conquer Master

i
Splittin Pre-processing 7
P € BMM Initialization

Unit Propagation W [Backjump
L

{ Branching } [

{Programmatic PropagationJ

l

All Variables
Assigned?

SAT

Yes

Conflict Analysis

Programmatic Conflict Analysis
BMM Update

— UNSAT

MAPLECRYPT

Outline of Contributions

Extending reasoning components for cryptographic problems
m CDCL(Crypto) framework ([NG19])
m Algebraic fault attack ([NHGG18])
m Differential cryptanalysis ([NG19])

Improving search heuristics
m Machine learning for search heuristics optimization problems
m Sequencing: Splitting heuristics ([NLFG20, NNS*17])
m Initializing: Variable order and value selection (Branching

heuristics) ([NDT*20])

Part 1: CDCL(Crypto) Solvers

Overview

SAT

Input Formula

l

Pre-processing

[Unit Propagation W

Branchin, W [Backjum

e J {Programmatic PropagationJ { Jump
All Variables
Assigned? No

No
Yes
Conflict Analysis Top Level? Yes
vel?

Programmatic Conflict Analysis

CDCL(CryPTO): CDCL SAT solver with custom cryptographic reasoning

UNSAT

Lost in Translation

m When encoding a constraint into SAT, some higher level
properties might be lost

m Example: consider a pseudo-Boolean constraint
C:z+y<0,(z,y€{0,1})
m We trivially know: C' — Z and C' — .

Lost in Translation

m When encoding a constraint into SAT, some higher level
properties might be lost

m Example: consider a pseudo-Boolean constraint
C:z+y<0,(zx,y€{0,1})
m We trivially know: C' — Z and C' — .
m We can encode it using a half-adder

Lost in Translation

m When encoding a constraint into SAT, some higher level
properties might be lost

m Example: consider a pseudo-Boolean constraint
C:z+y<0,(zx,y€{0,1})
m We trivially know: C' — Z and C' — .
m We can encode it using a half-adder
B sum < x @y, carry <> x Ay, and adding constraints
sum = 0, carry = 0.

Lost in Translation

m When encoding a constraint into SAT, some higher level
properties might be lost

m Example: consider a pseudo-Boolean constraint
C:z+y<0,(zx,y€{0,1})
m We trivially know: C' — Z and C' — .
m We can encode it using a half-adder
B sum < x @y, carry <> x Ay, and adding constraints
sum = 0, carry = 0.
m Resultant CNF: (—zV =) A (-2 Vy) A (2 Vy)

Lost in Translation

m When encoding a constraint into SAT, some higher level
properties might be lost

m Example: consider a pseudo-Boolean constraint
C:24+y<0,(z,y€{0,1})
m We trivially know: C' — Z and C' — .
m We can encode it using a half-adder
B sum < x @y, carry <> x Ay, and adding constraints
sum = 0, carry = 0.
m Resultant CNF: (—zV =) A (-2 Vy) A (2 Vy)
m No unit clause to propagate!

Encoding and Propagation

Encoding Good for

Size © o)
1z¢ Unit Progpagation

Encoding and Propagation

Encoding Good for

Size © O
1z¢ Unit Progpagation

m Ideal: Having “good” propagation while keeping the encoding
small

Encoding and Propagation

Encoding Good for

Size © O
1z¢ Unit Progpagation

m Ideal: Having “good” propagation while keeping the encoding
small

m Extending propagation programmatically

Encoding and Propagation

Encoding Good for

Size © O
1z¢ Unit Progpagation

m Ideal: Having “good” propagation while keeping the encoding
small

m Extending propagation programmatically

m Using Programmatic SAT architecture [GOST12]

Programmatic SAT

m Instrumenting a SAT solver with callbacks

Programmatic SAT

m Instrumenting a SAT solver with callbacks

m Extending functionality of propagation and conflict analysis

Programmatic SAT

m Instrumenting a SAT solver with callbacks
m Extending functionality of propagation and conflict analysis

m Similar to and derived from CDCL(T") paradigm [NOTO06]

Programmatic SAT

m Instrumenting a SAT solver with callbacks
m Extending functionality of propagation and conflict analysis
m Similar to and derived from CDCL(T") paradigm [NOTO06]

m Programmatic callbacks analyze the partial assignment

Programmatic SAT

m Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T’) paradigm [NOTO06]

Programmatic callbacks analyze the partial assignment

Propagation callback

m Called after unit propagation
m Checks for implied literals that are missed by unit propagation

Programmatic SAT

m Instrumenting a SAT solver with callbacks
Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T’) paradigm [NOTO06]

Programmatic callbacks analyze the partial assignment

Propagation callback
m Called after unit propagation
m Checks for implied literals that are missed by unit propagation
m Conflict analysis callback
m Called after propagation is done
m Checks if partial assignment cannot be extended to a full
solution

Programmatic SAT

m Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T’) paradigm [NOTO06]

Programmatic callbacks analyze the partial assignment

Propagation callback

m Called after unit propagation

m Checks for implied literals that are missed by unit propagation
m Conflict analysis callback
m Called after propagation is done

m Checks if partial assignment cannot be extended to a full
solution

It can be seen as as solver for hybrid “CNF+C" constraints.

Programmatic SAT

Input Formula

(
‘Unit Propagation}—[Backjump }
L

Branching

All Variables
Assigned?

New Reason
Clauses?

No
Programmatic
AT
8 Conflict Analysis

New Conflict
Clauses?

No

10

Case Studies

m Applied this framework to two cryptographic problems:

m Algebraic Fault Attack on SHA-1 and SHA-256
m Differential Cryptanalysis of round-reduced version of SHA-256

11

Algebraic Fault Analysis

m Implementation attack on a crypto function with an
embedded secret

12

Algebraic Fault Analysis

m Implementation attack on a crypto function with an
embedded secret

® Inducing faults in the process of target function

12

Algebraic Fault Analysis

m Implementation attack on a crypto function with an
embedded secret

® Inducing faults in the process of target function

m Pre-image: given H, find an m, s.t. SHA(m) = H.

12

Algebraic Fault Analysis

m Implementation attack on a crypto function with an
embedded secret

® Inducing faults in the process of target function

m Pre-image: given H, find an m, s.t. SHA(m) = H.

m Very hard by itself.

12

Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function
Pre-image: given H, find an m, s.t. SHA(m) = H.
Very hard by itself.

Collect extra information (constraints) about the secret m

12

Algebraic Fault Analysis

Implementation attack on a crypto function with an
embedded secret

Inducing faults in the process of target function
Pre-image: given H, find an m, s.t. SHA(m) = H.
Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA'(m) = H’

12

Algebraic Fault Analysis

m Implementation attack on a crypto function with an
embedded secret

® Inducing faults in the process of target function

m Pre-image: given H, find an m, s.t. SHA(m) = H.

m Very hard by itself.

m Collect extra information (constraints) about the secret m
m Inject fault in a target register: SHA'(m) = H'

m and repeat SHA"(m) = H"

12

Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

13

Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

m Each round mixes one word of message with state variables

13

Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

m Each round mixes one word of message with state variables

m SHA-1(m) : frg o frgo---0 f1 0 fo(m)

13

Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

m Each round mixes one word of message with state variables

m SHA-1(m) : frg o frs oo f10 fo(m)

m Slice the function into smaller number of rounds and inject
fault in between

m Focus on last 16 rounds

13

Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

m Each round mixes one word of message with state variables
m SHA-1(m) : frg o frs oo f10 fo(m)

m Slice the function into smaller number of rounds and inject

fault in between

m Focus on last 16 rounds

m SHA-1(m) :frg 0 - o fesofgz 0 -+ - o f1 0 fo(m)

13

Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

m Each round mixes one word of message with state variables
m SHA-1(m) : frg o frs oo f10 fo(m)

m Slice the function into smaller number of rounds and inject

fault in between
m Focus on last 16 rounds
SHA-1(m) :frgo--- 0 feaofez 0 --- 0 f1 o fo(m)

Model fault injection with a random value

H] = fea.79(fo..63(mo..63)B0;, mea..79)

13

Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

m Each round mixes one word of message with state variables

m SHA-1(m) : frgo frgo---0o f1 0 fo(m)

m Slice the function into smaller number of rounds and inject
fault in between

m Focus on last 16 rounds
SHA-1(m) :frgo---o fesofez 0 --- 0 fi o fo(m)

m Model fault injection with a random value

H = fea.79(fo..63(mo0..63) ©di, mea..79)
N—

m Unaffected parts are just repeated.

13

Algebraic Fault Attack on SHA functions

m SHA functions: lteratively applying a round function

m Each round mixes one word of message with state variables

m SHA-1(m) : frgo frgo---0o f1 0 fo(m)

m Slice the function into smaller number of rounds and inject
fault in between

m Focus on last 16 rounds
SHA-1(m) :frgo---o fesofez 0 --- 0 fi o fo(m)

m Model fault injection with a random value

H = fea.79(fo..63(mo0..63) ©di, mea..79)
N—

m Unaffected parts are just repeated. Abstract them away.

13

Algebraic Fault Analysis - Programmatic Approach

m Base SAT solver: MapleSAT
m Programmatic conflict analyzer
m Embedding the verification loop
m As soon as message word variables are set, they are ready to

be verified
m Early embedded check vs. Straightforward check after solving

completely
m Programmatic propagator

m Improving the propagation flow of multi-operand additions
m Generating reason clauses in each column addition when
output bits are missed

14

Algebraic Fault Analysis - Results

m Recovering SHA-256
message bits

m 14.3x speed-up on
average

m 17 fewer faults were
needed compared to the
previous works

Time (s)

45000

40000

35000

30000

25000

20000

15000

10000

5000

T T

MapleSAT
SHA-Propagator MapleSAT

t SHA-Conflict-analyzer MapleSAT ——

Full Programmatic MapleSAT ——

0 20 40 60
Number of instances solved

80

100

15

Part 2: Machine Learning based
Splitting Heuristics in Parallel SAT
Solvers

Overview

SAT

Input Formula

Divide-and-Conquer Master

1
{ Splitting } { Pre-processing }

l

{ Branching]—{Unit Propagation}*[Backjump }

All Variables
Assigned?

3

Top Level? Yes

Conflict Analysis

UNSAT

16

Parallel SAT Solvers

Divide-and-Conquer Solvers

m Split the formula into several sub-formulas and solve them in
parallel

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

m Split the formula into several sub-formulas and solve them in
parallel

m Solvers share information

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

m Split the formula into several sub-formulas and solve them in
parallel

m Solvers share information

m Splitting the formula ¢:

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

m Split the formula into several sub-formulas and solve them in
parallel
m Solvers share information

m Splitting the formula ¢:

m Pick a variable z in ¢

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

m Split the formula into several sub-formulas and solve them in
parallel
m Solvers share information

m Splitting the formula ¢:

m Pick a variable z in ¢
m Generate two sub-formulas ¢1 = ¢[—z] and ¢2 = ¢[z]

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

m Split the formula into several sub-formulas and solve them in
parallel

m Solvers share information

m Splitting the formula ¢:

m Pick a variable z in ¢
m Generate two sub-formulas ¢1 = ¢[—z] and ¢2 = ¢[z]
m Repeat for ¢; and ¢o

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

m Split the formula into several sub-formulas and solve them in
parallel
m Solvers share information

m Splitting the formula ¢:

m Pick a variable z in ¢
m Generate two sub-formulas ¢1 = ¢[—z] and ¢2 = ¢[z]
m Repeat for ¢; and ¢o

m ¢ is SAT: At least one solver returns SAT
m ¢ is UNSAT: All solvers return UNSAT

17

Search Space Splitting

B¢ =N a2 AT AT
B Yo =¢pANxTa A5 AT
m g3 =¢ANT2 N3

18

Search Space Splitting

B¢ =N a2 AT AT
B Yo =¢pANxTa A5 AT
B p3s =) AT2AT3

Question (Splitting Heuristic)

How to “divide” so the “conquer” becomes easier?

18

Performance Metric

m Q: How do we know a splitting variable is good?

19

Performance Metric

m Q: How do we know a splitting variable is good?

m We need to quantify the quality of a splitting variable.

19

Performance Metric

m Q: How do we know a splitting variable is good?
m We need to quantify the quality of a splitting variable.

m Performance metric: pm : ¢ x v =& R

19

Performance Metric

m Q: How do we know a splitting variable is good?
m We need to quantify the quality of a splitting variable.
m Performance metric: pm : ¢ x v - R

m Splitting Heuristic(¢) = argmin,cypars(s)1pm(9,v)}

19

Performance Metric

m Q: How do we know a splitting variable is good?

m We need to quantify the quality of a splitting variable.
m Performance metric: pm : ¢ x v - R

m Splitting Heuristic(¢) = argmin,cypars(s)1pm(9,v)}

m The ultimate goal is to minimize the runtime.

19

Performance Metric

m Q: How do we know a splitting variable is good?
m We need to quantify the quality of a splitting variable.

m Performance metric: pm : ¢ x v =& R

Splitting Heuristic(¢) = argmin,cyars(s)1pm(9,v)}
m The ultimate goal is to minimize the runtime.

We define pm(¢,v): Total wall-clock runtime of solving ¢

when splitting once and solving ¢[v] and ¢[—wv] in parallel.

19

Building the Splitting Heuristic

m Computing this pm needs knowing the runtime and status of
sub-formulas

m We don't know the runtime a priori
m We can build a machine learning model to predict runtime

m Predicting runtime is a very challenging task

20

Building the Splitting Heuristic

Computing this pm needs knowing the runtime and status of

sub-formulas

We don’t know the runtime a priori

m We can build a machine learning model to predict runtime

Predicting runtime is a very challenging task

m Observation: We are looking for a minimum element in a list
of elements ordered by pm

20

Learn to Rank

m Instead of predicting pm values for each item

21

Learn to Rank

m Instead of predicting pm values for each item

m Predict how they compare to each other

21

Learn to Rank

m Instead of predicting pm values for each item
m Predict how they compare to each other

m This predictor can be used as a comparator to find the

minimum

21

Learn to Rank

m Instead of predicting pm values for each item
m Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and w in formula ¢:

m Q: is v better than w for splitting ¢?

21

Learn to Rank

m Instead of predicting pm values for each item
m Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and w in formula ¢:

m Q: is v better than w for splitting ¢?

1, pm(‘bv Ui) < pm((b’ Uj)

PW(¢7 Ui7vj) = .
0, otherwise

21

Learning PW

<Ffeat(¢)7 erat(vi)y erat(vj)’ label : (pm(¢’ Ui) < pm(d)) ’Uj))>

22

Learning PW

<Ffeat(¢)a erat(vi)a erat(vj)? label : (pm(¢7 Ui) < pm(¢) ’Uj))>

m Formula Features:
m #Variables, #Clauses, AvgVariableNodeDegree, - - -

22

Learning PW

<Ffeat(¢)a erat(vi)> erat(vj)? label : (pm(¢7 Ui) < pm(¢) ’Uj))>

m Formula Features:
m #Variables, #Clauses, AvgVariableNodeDegree, - - -
m Variable Features:

m #inBinaryClause, #inTernaryClause, - - -
m CombinedLRB, PropagationRate, #Flips, - - -

22

Learning PW

<Ffeat(¢)a erat(vi)> erat(vj)? label : (pm(¢7 Ui) < pm(¢) ’Uj))>

m Formula Features:
m #Variables, #Clauses, AvgVariableNodeDegree, - - -
m Variable Features:

m #inBinaryClause, #inTernaryClause, - - -
m CombinedLRB, PropagationRate, #Flips, - - -

m Feature selection:

m Addition pass: sorted by importance
m Deletion pass: sorted by computation time

22

Learning PW

<Ffeat(¢)a erat(vi)> erat(vj)? label : (pm(¢7 Ui) < pm(¢) ’Uj))>

m Formula Features:
m #Variables, #Clauses, AvgVariableNodeDegree, - - -
m Variable Features:

m #inBinaryClause, #inTernaryClause, - - -
m CombinedLRB, PropagationRate, #Flips, - - -

m Feature selection:

m Addition pass: sorted by importance
m Deletion pass: sorted by computation time

m Random Forest: accuracy 80.72%

22

Experimental Results - Cryptographic benchmark

m Framework: Painless

m Baseline: Painless-DC
w/ flip splitting
heuristic

m SHA-1 preimage

Time (s)

25000

20000

15000

10000

5000

T T T T T T T
Treengeling

Painless-flip —=—
Painless-DCML-Pairwise —+—

& o - = ! ! !

5 10 15 20 25 30 B5) 40
Number of instances solved

45

23

Part 3: BMM-based Heuristic
Initialization

Overview

SAT

Input Formula

BMM Initialization

{ Branching]—{Unit Propagation}—[Backjump }

e

Com‘llct Ana\ysws Yes

All Variables
Assigned?

Top Level?
BMM Update

UNSAT

24

Heuristic Initialization

m Branching heuristics: variable selection and value selection
(polarity)

25

Heuristic Initialization

m Branching heuristics: variable selection and value selection
(polarity)

m Usually look-back: make a decision based on the gathered
search statistics

25

Heuristic Initialization

m Branching heuristics: variable selection and value selection

(polarity)
m Usually look-back: make a decision based on the gathered

search statistics

m At the start of search: no statistics available

25

Heuristic Initialization

m Branching heuristics: variable selection and value selection

(polarity)
m Usually look-back: make a decision based on the gathered
search statistics

m At the start of search: no statistics available

m Goal: derive variable score and preferred value initial values,

s.t. the runtime is improved.

25

Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True

Designed by Poupart, Jaini and Duan

26

Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True

m Goal: learn a distribution that satisfies all of the clauses

Designed by Poupart, Jaini and Duan

26

Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True
m Goal: learn a distribution that satisfies all of the clauses

Prior

T2

Tn

sHEElE

Designed by Poupart, Jaini and Duan

Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True
m Goal: learn a distribution that satisfies all of the clauses

Prior

x1Vxa Vs
To -
Evidence

Tn

sHEElE

Designed by Poupart, Jaini and Duan

Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True
m Goal: learn a distribution that satisfies all of the clauses

Prior Posterior

/[\
/
/
x1Vxa Vs
2 5,

Evidence \
N\

T2

sHEElE

/1

Designed by Poupart, Jaini and Duan

Bayesian Moment Matching (BMM) for SAT

m For each variable: P(z = T): probability of setting = to True
m Goal: learn a distribution that satisfies all of the clauses

Prior Posterior

/ SN
/ AN
/ h \
. 1V -ry Vs Moment 25| 2
&2 e — v rea— cooN | 22
Evidence \ Matching J \
/\ /\ 7 5
/ i \

o A /\ e
/ \ ' N

Designed by Poupart, Jaini and Duan

Heuristic Initialization

m Polarity
m BMM probabilities collectively represent an assignment
) False, P(x=1T)<0.5
m Polarity[x] =
True, Plx=T)>05
m Activity
m Give higher priority to variables that BMM is more confident
about its polarity

a Activityl] = 4+ @ =T), Plw=1) <05
o Pz =T), Pz =T)>05

27

Experimental Results

14000
12000
m SHA-1 preimage
10000
benchmark
= Apple-to-apple g oo
=
comparison F 6000
m BMM on MapleSAT, 4000

Glucose and
CryptoMiniSAT

2000

04

T T T T
MapleSAT —&—
MapleSAT-BMM —=&—
Glucose
Glucose-BMM
CryptoMiniSAT
CryptoMiniSAT-BMM —&—

Number of solved instances

28

Summary and Takeaways

Extending Reasoning Components

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

29

Summary and Takeaways

Extending Reasoning Components

Programmatic
SAT

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

29

Summary and Takeaways

Extending Reasoning Components

[CDCL(Crypto) framework]

Programmatic
SAT

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

29

Summary and Takeaways

Differential Cryptanalysis
on SHA-256

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

Extending Reasoning Components

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

29

Summary and Takeaways

Extending Reasoning Components

Differential Cryptanalysis
on SHA-256

(Recovering secret with 17 fewer faults
14.3x speedup

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

29

Summary and Takeaways

Extending Reasoning Components

e A
| SAT-based SHA-256 collision: 1 more round/\

Differential Cryptanalysis
on SHA-256

P N
Recovering secret with 17 fewer faults
14.3x speedup

N

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

29

Summary and Takeaways

Extending Reasoning Components

e A
| SAT-based SHA-256 collision: 1 more round/\

Differential Cryptanalysis
on SHA-256

P N
Recovering secret with 17 fewer faults
14.3x speedup

N

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

29

Summary and Takeaways

Extending Reasoning Components

e A
| SAT-based SHA-256 collision: 1 more round/\

Differential Cryptanalysis
on SHA-256

P N
Recovering secret with 17 fewer faults
14.3x speedup

N

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

29

Summary and Takeaways

Extending Reasoning Components

e A
| SAT-based SHA-256 collision: 1 more round/\

Differential Cryptanalysis
on SHA-256

(Recovering secret with 17 fewer faults
14.3x speedup

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

Splitting Heuristics

29

Summary and Takeaways

Extending Reasoning Components

e A
| SAT-based SHA-256 collision: 1 more round/\

Differential Cryptanalysis
on SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

Improving Search Heuristics

‘ more instances on

SHA-1 preimage

Splitting Heuristics

@ Key insights from literature
@ Our designs

® Our results

Summary and Takeaways

Extending Reasoning Components

e A
| SAT-based SHA-256 collision: 1 more round/\

Differential Cryptanalysis
on SHA-256

(Recovering secret with 17 fewer faults
14.3x speedup

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

@ Key insights from literature
@ Our designs
® Our results

more instances on

Improving Search Heuristics

SHA-1 preimage

Splitting Heuristics

Sequencing:
Pairwise ranking

Initialization:
BMM-based
formulation of SAT

29

Summary and Takeaways

Extending Reasoning Components

\: SAT-based SHA-256 collision: 1 more round \\

Differential Cryptanalysis
on SHA-256

Recovering secret with 17 fewer faults
14.3x speedup

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

(more instances on)
SHA-1 preimage

Initialization of
Variable and Value

Splitting Heuristics Selection

Initialization:
Sequencing:
Pairwise ranking

BMM-based
formulation of SAT

29

Summary and Takeaways

Extending Reasoning Components

\: SAT-based SHA-256 collision: 1 more round \\

Differential Cryptanalysis
on SHA-256

Recovering secret with 17 fewer faults
14.3x speedup

Algebraic Fault Attack
on SHA-1 and SHA-256

CDCL(Crypto) framework]

@ Key insights from literature
@ Our designs
® Our results

Improving Search Heuristics

[2x speedup on

SHA-1 preimage

[more instances on | :
SHA-1 preimage

Initialization of
Variable and Value

Splitting Heuristics Selection

Initialization:
Sequencing:
Pairwise ranking

BMM-based
formulation of SAT

29

Publications

INLGT17]

[NNST17]

[NHGG18]

[NG19]

INDT*20]

[INLFG20]

Nejati, Liang, Gebotys, Czarnecki, Ganesh

Adaptive restart and CEGAR-based solver for inverting cryptographic hash functions
VSTTE 2017

Nejati, Newsham, Scott, Liang, Gebotys, Poupart, Ganesh

A propagation rate based splitting heuristic for divide-and-conquer solvers

SAT 2017

Nejati, Hor3&ek, Gebotys, Ganesh
Algebraic fault attack on SHA hash functions using programmatic SAT solvers
CP 2018

Nejati, Ganesh
CDCL(Crypto) SAT solvers for cryptanalysis
CASCON 2019

Nejati/Duan, Trimponias, Poupart, Ganesh
Online bayesian moment matching based SAT solver heuristics
ICML 2020

Nejati, Le Frioux, Ganesh
A machine learning based splitting heuristic for divide-and-conquer solvers

CP 2020

30

Thanks!

Questions?

References i

B Glenn De Witte.
Automatic sat-solver based search tools for cryptanalysis.

[Claudia Fiorini, Enrico Martinelli, and Fabio Massacci.
How to Fake an RSA Signature by Encoding Modular
Root Finding as a SAT Problem.

32

References ii

ﬁ Vijay Ganesh, Charles W. O'Donnell, Mate Soos, Srinivas
Devadas, Martin C. Rinard, and Armando Solar-Lezama.
Lynx: A programmatic SAT solver for the RNA-folding
problem.

In Theory and Applications of Satisfiability Testing - SAT 2012
- 15th International Conference, Trento, Italy, June 17-20,
2012. Proceedings, pages 143-156, 2012.

ﬁ Fabio Massacci.
Using Walk-SAT and Rel-SAT for Cryptographic Key
Search.
In [JCAI volume 1999, pages 290—295, 1999.

33

References ii

6 Fabio Massacci and Laura Marraro.
Logical Cryptanalysis as a SAT Problem.

M Pawet Morawiecki and Marian Srebrny.
A SAT-based Preimage Analysis of Reduced KECCAK
Hash Functions.

@ Ilya Mironov and Lintao Zhang.
Applications of SAT Solvers to Cryptanalysis of Hash
Functions.

34

References iv

ﬁ Saeed Nejati, Haonan Duan, George Trimponias, Pascal
Poupart, and Vijay Ganesh.
Online bayesian moment matching based sat solver
heuristics.
2020.

@ Saeed Nejati and Vijay Ganesh.
Cdcl (crypto) sat solvers for cryptanalysis.
In Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering, pages 311-316,
2019.

35

References v

[M Saeed Nejati, Jan Horatek, Catherine Gebotys, and Vijay
Ganesh.
Algebraic fault attack on sha hash functions using
programmatic sat solvers.

M Saeed Nejati, Ludovic Le Frioux, and Vijay Ganesh.
A machine learning based splitting heuristic for
divide-and-conquer solvers.

36

References vi

@ Saeed Nejati, Jia Hui Liang, Catherine Gebotys, Krzysztof
Czarnecki, and Vijay Ganesh.
Adaptive restart and cegar-based solver for inverting
cryptographic hash functions.
In Working Conference on Verified Software: Theories, Tools,

and Experiments, pages 120-131. Springer, 2017.

ﬁ Saeed Nejati, Zack Newsham, Joseph Scott, Jia Hui Liang,
Catherine Gebotys, Pascal Poupart, and Vijay Ganesh.
A propagation rate based splitting heuristic for
divide-and-conquer solvers.
In International Conference on Theory and Applications of
Satisfiability Testing, pages 251-260. Springer, 2017.

37

References vii

E Vegard Nossum.
SAT-based Preimage Attacks on SHA-1.

@ Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving sat and sat modulo theories: From an abstract
davis—putnam-logemann-loveland procedure to dpll (t).

@ Lukas Prokop.
Differential cryptanalysis with SAT solvers.

38

References viii

@ Aaron Tomb.
Applying Satisfiability to the Analysis of Cryptography.
https://github.com/GaloisInc/sat2015-crypto/blob/
master/slides/talk.pdf, 2015.

39

https://github.com/GaloisInc/sat2015-crypto/blob/master/slides/talk.pdf
https://github.com/GaloisInc/sat2015-crypto/blob/master/slides/talk.pdf

	Extending Reasoning Components for Cryptographic Problems
	Machine Learning based Splitting Heuristics
	Machine Learning based Initialization of Search Heuristics

