Machine Learning based SAT Solvers for Cryptanalysis

Saeed Nejati

April 2nd, 2020

Motivation

■ SAT Solvers: Powerful general purpose search tools

Motivation

■ SAT Solvers: Powerful general purpose search tools
■ Cryptanalysis: Searching a huge search space for a secret key/value

Motivation

- SAT/SMT solvers have increasingly been used in Cryptographic tasks

■ Finding cryptographic keys [Mas99, MM00]

- Modular root finding [FMM03]
- A collision attack [MZ06]

■ Preimage attacks [MS13], [Nos12]

- Differential cryptanalysis [Pro16]
- RX-differentials [Ashur2017], [DW17]
- Verification of cryptographic primitives [Tom15]

Motivation

- SAT/SMT solvers have increasingly been used in Cryptographic tasks
- Finding cryptographic keys [Mas99, MM00]
- Modular root finding [FMM03]
- A collision attack [MZ06]
- Preimage attacks [MS13], [Nos12]
- Differential cryptanalysis [Pro16]
- RX-differentials [Ashur2017], [DW17]
- Verification of cryptographic primitives [Tom15]

■ However, they mostly used SAT solvers as a black-box

Motivation

- SAT/SMT solvers have increasingly been used in Cryptographic tasks
- Finding cryptographic keys [Mas99, MM00]
- Modular root finding [FMM03]
- A collision attack [MZ06]
- Preimage attacks [MS13], [Nos12]
- Differential cryptanalysis [Pro16]
- RX-differentials [Ashur2017], [DW17]
- Verification of cryptographic primitives [Tom15]

■ However, they mostly used SAT solvers as a black-box

Question

Can we use SAT solvers in a white-box fashion?

Motivation

- SAT/SMT solvers have increasingly been used in Cryptographic tasks
- Finding cryptographic keys [Mas99, MM00]
- Modular root finding [FMM03]
- A collision attack [MZ06]

■ Preimage attacks [MS13], [Nos12]

- Differential cryptanalysis [Pro16]
- RX-differentials [Ashur2017], [DW17]
- Verification of cryptographic primitives [Tom15]

■ However, they mostly used SAT solvers as a black-box

Question

Can we use SAT solvers in a white-box fashion?
(Tailor internals for a specific cryptographic problem)

Opening up a SAT solver

[LG+18]

Opening up a SAT solver

[LG+18]

Opening up a SAT solver

[LG+18]

Opening up a SAT solver

Outline of Contributions

1 Extending reasoning components for cryptographic problems

- CDCL(Crypto) framework ([NG19])
- Algebraic fault attack ([NHGG18])
- Differential cryptanalysis ([NG19])

2 Improving search heuristics

- Machine learning for search heuristics optimization problems
- Sequencing: Splitting heuristics ([NLFG20, NNS+ $\left.{ }^{+} 17\right]$)
- Initializing: Variable order and value selection (Branching heuristics) ([NDT+20])

Part 1: CDCL(Crypto) Solvers

Overview

CDCL(CRYPTO): CDCL SAT solver with custom cryptographic reasoning

Lost in Translation

■ When encoding a constraint into SAT, some higher level properties might be lost

■ Example: consider a pseudo-Boolean constraint $C: x+y \leq 0,(x, y \in\{0,1\})$

- We trivially know: $C \rightarrow \bar{x}$ and $C \rightarrow \bar{y}$.

Lost in Translation

■ When encoding a constraint into SAT, some higher level properties might be lost

■ Example: consider a pseudo-Boolean constraint $C: x+y \leq 0,(x, y \in\{0,1\})$

- We trivially know: $C \rightarrow \bar{x}$ and $C \rightarrow \bar{y}$.
- We can encode it using a half-adder

Lost in Translation

■ When encoding a constraint into SAT, some higher level properties might be lost

■ Example: consider a pseudo-Boolean constraint $C: x+y \leq 0,(x, y \in\{0,1\})$

- We trivially know: $C \rightarrow \bar{x}$ and $C \rightarrow \bar{y}$.
- We can encode it using a half-adder
- sum $\leftrightarrow x \oplus y$, carry $\leftrightarrow x \wedge y$, and adding constraints sum $=0$, carry $=0$.

Lost in Translation

■ When encoding a constraint into SAT, some higher level properties might be lost

- Example: consider a pseudo-Boolean constraint $C: x+y \leq 0,(x, y \in\{0,1\})$
- We trivially know: $C \rightarrow \bar{x}$ and $C \rightarrow \bar{y}$.
- We can encode it using a half-adder
- sum $\leftrightarrow x \oplus y$, carry $\leftrightarrow x \wedge y$, and adding constraints sum $=0$, carry $=0$.
- Resultant CNF: $(\neg x \vee \neg y) \wedge(\neg x \vee y) \wedge(x \vee y)$

Lost in Translation

■ When encoding a constraint into SAT, some higher level properties might be lost

■ Example: consider a pseudo-Boolean constraint $C: x+y \leq 0,(x, y \in\{0,1\})$

- We trivially know: $C \rightarrow \bar{x}$ and $C \rightarrow \bar{y}$.
- We can encode it using a half-adder
- sum $\leftrightarrow x \oplus y$, carry $\leftrightarrow x \wedge y$, and adding constraints sum $=0$, carry $=0$.
- Resultant CNF: $(\neg x \vee \neg y) \wedge(\neg x \vee y) \wedge(x \vee y)$
- No unit clause to propagate!

Encoding and Propagation

Size \bigcirc Encoding \longrightarrow| Good for |
| :---: |
| Unit Progpagation |

Encoding and Propagation

■ Ideal: Having "good" propagation while keeping the encoding small

Encoding and Propagation

■ Ideal: Having "good" propagation while keeping the encoding small

■ Extending propagation programmatically

Encoding and Propagation

■ Ideal: Having "good" propagation while keeping the encoding small

- Extending propagation programmatically
- Using Programmatic SAT architecture [GOS ${ }^{+}$12]

Programmatic SAT

- Instrumenting a SAT solver with callbacks

Programmatic SAT

- Instrumenting a SAT solver with callbacks

■ Extending functionality of propagation and conflict analysis

Programmatic SAT

- Instrumenting a SAT solver with callbacks
- Extending functionality of propagation and conflict analysis
- Similar to and derived from $\operatorname{CDCL}(T)$ paradigm [NOT06]

Programmatic SAT

- Instrumenting a SAT solver with callbacks
- Extending functionality of propagation and conflict analysis
- Similar to and derived from $\operatorname{CDCL}(T)$ paradigm [NOT06]

■ Programmatic callbacks analyze the partial assignment

Programmatic SAT

- Instrumenting a SAT solver with callbacks
- Extending functionality of propagation and conflict analysis
- Similar to and derived from $\operatorname{CDCL}(T)$ paradigm [NOT06]

■ Programmatic callbacks analyze the partial assignment

- Propagation callback
- Called after unit propagation
- Checks for implied literals that are missed by unit propagation

Programmatic SAT

- Instrumenting a SAT solver with callbacks
- Extending functionality of propagation and conflict analysis
- Similar to and derived from $\operatorname{CDCL}(T)$ paradigm [NOT06]
- Programmatic callbacks analyze the partial assignment
- Propagation callback
- Called after unit propagation
- Checks for implied literals that are missed by unit propagation

■ Conflict analysis callback

- Called after propagation is done
- Checks if partial assignment cannot be extended to a full solution

Programmatic SAT

- Instrumenting a SAT solver with callbacks
- Extending functionality of propagation and conflict analysis
- Similar to and derived from $\operatorname{CDCL}(T)$ paradigm [NOT06]
- Programmatic callbacks analyze the partial assignment
- Propagation callback
- Called after unit propagation
- Checks for implied literals that are missed by unit propagation
- Conflict analysis callback
- Called after propagation is done
- Checks if partial assignment cannot be extended to a full solution

■ It can be seen as as solver for hybrid "CNF+C" constraints.

Programmatic SAT

Case Studies

- Applied this framework to two cryptographic problems:
- Algebraic Fault Attack on SHA-1 and SHA-256
- Differential Cryptanalysis of round-reduced version of SHA-256

Algebraic Fault Analysis

- Implementation attack on a crypto function with an embedded secret

Algebraic Fault Analysis

- Implementation attack on a crypto function with an embedded secret
- Inducing faults in the process of target function

Algebraic Fault Analysis

- Implementation attack on a crypto function with an embedded secret
- Inducing faults in the process of target function

■ Pre-image: given H, find an m, s.t. $S H A(m)=H$.

Algebraic Fault Analysis

- Implementation attack on a crypto function with an embedded secret
- Inducing faults in the process of target function

■ Pre-image: given H, find an m, s.t. $S H A(m)=H$.

- Very hard by itself.

Algebraic Fault Analysis

- Implementation attack on a crypto function with an embedded secret
- Inducing faults in the process of target function
- Pre-image: given H, find an m, s.t. $S H A(m)=H$.
- Very hard by itself.
- Collect extra information (constraints) about the secret m

Algebraic Fault Analysis

- Implementation attack on a crypto function with an embedded secret
- Inducing faults in the process of target function
- Pre-image: given H, find an m, s.t. $S H A(m)=H$.
- Very hard by itself.
- Collect extra information (constraints) about the secret m

■ Inject fault in a target register: $S H A^{\prime}(m)=H^{\prime}$

Algebraic Fault Analysis

- Implementation attack on a crypto function with an embedded secret
- Inducing faults in the process of target function
- Pre-image: given H, find an m, s.t. $S H A(m)=H$.
- Very hard by itself.
- Collect extra information (constraints) about the secret m
- Inject fault in a target register: $S H A^{\prime}(m)=H^{\prime}$
- and repeat $S H A^{\prime \prime}(m)=H^{\prime \prime}$

Algebraic Fault Attack on SHA functions

■ SHA functions: Iteratively applying a round function

Algebraic Fault Attack on SHA functions

- SHA functions: Iteratively applying a round function
- Each round mixes one word of message with state variables

Algebraic Fault Attack on SHA functions

- SHA functions: Iteratively applying a round function
- Each round mixes one word of message with state variables

■ SHA $-1(m): f_{79} \circ f_{78} \circ \cdots \circ f_{1} \circ f_{0}(m)$

Algebraic Fault Attack on SHA functions

- SHA functions: Iteratively applying a round function
- Each round mixes one word of message with state variables

■ SHA- $1(m): f_{79} \circ f_{78} \circ \cdots \circ f_{1} \circ f_{0}(m)$

- Slice the function into smaller number of rounds and inject fault in between
- Focus on last 16 rounds

Algebraic Fault Attack on SHA functions

- SHA functions: Iteratively applying a round function
- Each round mixes one word of message with state variables
- SHA- $1(m): f_{79} \circ f_{78} \circ \cdots \circ f_{1} \circ f_{0}(m)$
- Slice the function into smaller number of rounds and inject fault in between
- Focus on last 16 rounds

■ SHA-1 $(m): f_{79} \circ \cdots \circ f_{64} \circ f_{63} \circ \cdots \circ f_{1} \circ f_{0}(m)$

Algebraic Fault Attack on SHA functions

- SHA functions: Iteratively applying a round function
- Each round mixes one word of message with state variables
- SHA- $1(m): f_{79} \circ f_{78} \circ \cdots \circ f_{1} \circ f_{0}(m)$
- Slice the function into smaller number of rounds and inject fault in between
- Focus on last 16 rounds
- SHA-1 $(m): f_{79} \circ \cdots \circ f_{64} \circ f_{63} \circ \cdots \circ f_{1} \circ f_{0}(m)$
- Model fault injection with a random value

■ $H_{i}^{\prime}=f_{64 . .79}\left(f_{0 . .63}\left(m_{0 . .63}\right) \oplus \delta_{i}, m_{64 . .79}\right)$

Algebraic Fault Attack on SHA functions

- SHA functions: Iteratively applying a round function
- Each round mixes one word of message with state variables
- SHA-1 $(m): f_{79} \circ f_{78} \circ \cdots \circ f_{1} \circ f_{0}(m)$
- Slice the function into smaller number of rounds and inject fault in between
- Focus on last 16 rounds

■ SHA-1 $(m): f_{79} \circ \cdots \circ f_{64} \circ f_{63} \circ \cdots \circ f_{1} \circ f_{0}(m)$

- Model fault injection with a random value

■ $H_{i}^{\prime}=f_{64.79}(\underbrace{f_{0 . .63}\left(m_{0 . .63}\right)} \oplus \delta_{i}, m_{64 . .79})$
■ Unaffected parts are just repeated.

Algebraic Fault Attack on SHA functions

- SHA functions: Iteratively applying a round function
- Each round mixes one word of message with state variables
- SHA- $1(m): f_{79} \circ f_{78} \circ \cdots \circ f_{1} \circ f_{0}(m)$
- Slice the function into smaller number of rounds and inject fault in between
- Focus on last 16 rounds

■ SHA-1 $(m): f_{79} \circ \cdots \circ f_{64} \circ f_{63} \circ \cdots \circ f_{1} \circ f_{0}(m)$

- Model fault injection with a random value

■ $H_{i}^{\prime}=f_{64.79}(\underbrace{f_{0 . .63}\left(m_{0 . .63}\right)} \oplus \delta_{i}, m_{64 . .79})$
■ Unaffected parts are just repeated. Abstract them away.

Algebraic Fault Analysis - Programmatic Approach

■ Base SAT solver: MapleSAT

- Programmatic conflict analyzer
- Embedding the verification loop
- As soon as message word variables are set, they are ready to be verified
■ Early embedded check vs. Straightforward check after solving completely
■ Programmatic propagator
- Improving the propagation flow of multi-operand additions
- Generating reason clauses in each column addition when output bits are missed

Algebraic Fault Analysis - Results

- Recovering SHA-256 message bits
- $14.3 x$ speed-up on average
- 17 fewer faults were needed compared to the previous works

Part 2: Machine Learning based Splitting Heuristics in Parallel SAT

Solvers

Overview

Parallel SAT Solvers

Divide-and-Conquer Solvers

- Split the formula into several sub-formulas and solve them in parallel

Parallel SAT Solvers

Divide-and-Conquer Solvers

- Split the formula into several sub-formulas and solve them in parallel
■ Solvers share information

Parallel SAT Solvers

Divide-and-Conquer Solvers

- Split the formula into several sub-formulas and solve them in parallel
- Solvers share information
- Splitting the formula ϕ :

Parallel SAT Solvers

Divide-and-Conquer Solvers

- Split the formula into several sub-formulas and solve them in parallel
- Solvers share information
- Splitting the formula ϕ :
- Pick a variable x in ϕ

Parallel SAT Solvers

Divide-and-Conquer Solvers

- Split the formula into several sub-formulas and solve them in parallel
■ Solvers share information
- Splitting the formula ϕ :
- Pick a variable x in ϕ
- Generate two sub-formulas $\phi_{1}=\phi[\neg x]$ and $\phi_{2}=\phi[x]$

Parallel SAT Solvers

Divide-and-Conquer Solvers

- Split the formula into several sub-formulas and solve them in parallel
■ Solvers share information
- Splitting the formula ϕ :
- Pick a variable x in ϕ
- Generate two sub-formulas $\phi_{1}=\phi[\neg x]$ and $\phi_{2}=\phi[x]$
- Repeat for ϕ_{1} and ϕ_{2}

Parallel SAT Solvers

Divide-and-Conquer Solvers

- Split the formula into several sub-formulas and solve them in parallel

■ Solvers share information

- Splitting the formula ϕ :
- Pick a variable x in ϕ
- Generate two sub-formulas $\phi_{1}=\phi[\neg x]$ and $\phi_{2}=\phi[x]$
- Repeat for ϕ_{1} and ϕ_{2}
- ϕ is SAT: At least one solver returns SAT
- ϕ is UNSAT: All solvers return UNSAT

Search Space Splitting

- $\phi_{1}=\phi \wedge \neg x_{2} \wedge x_{5} \wedge \neg x_{1}$
- $\phi_{2}=\phi \wedge \neg x_{2} \wedge x_{5} \wedge x_{1}$
- $\phi_{3}=\phi \wedge x_{2} \wedge x_{3}$

Search Space Splitting

- $\phi_{1}=\phi \wedge \neg x_{2} \wedge x_{5} \wedge \neg x_{1}$
- $\phi_{2}=\phi \wedge \neg x_{2} \wedge x_{5} \wedge x_{1}$
- $\phi_{3}=\phi \wedge x_{2} \wedge x_{3}$

Question (Splitting Heuristic)

How to "divide" so the "conquer" becomes easier?

Performance Metric

- Q: How do we know a splitting variable is good?

Performance Metric

- Q: How do we know a splitting variable is good?
- We need to quantify the quality of a splitting variable.

Performance Metric

- Q: How do we know a splitting variable is good?
- We need to quantify the quality of a splitting variable.

■ Performance metric: $p m: \phi \times v \rightarrow \mathbb{R}$

Performance Metric

- Q: How do we know a splitting variable is good?
- We need to quantify the quality of a splitting variable.

■ Performance metric: $p m: \phi \times v \rightarrow \mathbb{R}$

- SplittingHeuristic $(\phi)=\operatorname{argmin}_{v \in \operatorname{vars}(\phi)}\{p m(\phi, v)\}$

Performance Metric

- Q: How do we know a splitting variable is good?
- We need to quantify the quality of a splitting variable.

■ Performance metric: $p m: \phi \times v \rightarrow \mathbb{R}$

- SplittingHeuristic $(\phi)=\operatorname{argmin}_{v \in \operatorname{vars}(\phi)}\{p m(\phi, v)\}$

■ The ultimate goal is to minimize the runtime.

Performance Metric

- Q: How do we know a splitting variable is good?
- We need to quantify the quality of a splitting variable.

■ Performance metric: $p m: \phi \times v \rightarrow \mathbb{R}$

- SplittingHeuristic $(\phi)=\operatorname{argmin}_{v \in \operatorname{vars}(\phi)}\{p m(\phi, v)\}$
- The ultimate goal is to minimize the runtime.

■ We define $p m(\phi, v)$: Total wall-clock runtime of solving ϕ when splitting once and solving $\phi[v]$ and $\phi[\neg v]$ in parallel.

Building the Splitting Heuristic

- Computing this $p m$ needs knowing the runtime and status of sub-formulas
- We don't know the runtime a priori
- We can build a machine learning model to predict runtime

■ Predicting runtime is a very challenging task

Building the Splitting Heuristic

■ Computing this $p m$ needs knowing the runtime and status of sub-formulas

- We don't know the runtime a priori

■ We can build a machine learning model to predict runtime

- Predicting runtime is a very challenging task

■ Observation: We are looking for a minimum element in a list of elements ordered by pm

Learn to Rank

- Instead of predicting $p m$ values for each item

Learn to Rank

- Instead of predicting $p m$ values for each item

■ Predict how they compare to each other

Learn to Rank

- Instead of predicting $p m$ values for each item
- Predict how they compare to each other
- This predictor can be used as a comparator to find the minimum

Learn to Rank

- Instead of predicting $p m$ values for each item
- Predict how they compare to each other
- This predictor can be used as a comparator to find the minimum

■ Goal: given two variables v and u in formula ϕ :

- Q: is v better than u for splitting ϕ ?

Learn to Rank

- Instead of predicting $p m$ values for each item
- Predict how they compare to each other
- This predictor can be used as a comparator to find the minimum

■ Goal: given two variables v and u in formula ϕ :

- Q: is v better than u for splitting ϕ ?

$$
P W\left(\phi, v_{i}, v_{j}\right)= \begin{cases}1, & p m\left(\phi, v_{i}\right)<p m\left(\phi, v_{j}\right) \\ 0, & \text { otherwise }\end{cases}
$$

Learning $P W$

$$
\left\langle F_{\text {feat }}(\phi), V_{\text {feat }}\left(v_{i}\right), V_{\text {feat }}\left(v_{j}\right), \text { label }:\left(p m\left(\phi, v_{i}\right)<p m\left(\phi, v_{j}\right)\right)\right\rangle
$$

Learning $P W$

$$
\left\langle F_{\text {feat }}(\phi), V_{\text {feat }}\left(v_{i}\right), V_{\text {feat }}\left(v_{j}\right), \text { label }:\left(p m\left(\phi, v_{i}\right)<p m\left(\phi, v_{j}\right)\right)\right\rangle
$$

- Formula Features:
- \#Variables, \#Clauses, AvgVariableNodeDegree, ...

Learning $P W$

$$
\left\langle F_{\text {feat }}(\phi), V_{\text {feat }}\left(v_{i}\right), V_{\text {feat }}\left(v_{j}\right), \text { label }:\left(p m\left(\phi, v_{i}\right)<p m\left(\phi, v_{j}\right)\right)\right\rangle
$$

■ Formula Features:

- \#Variables, \#Clauses, AvgVariableNodeDegree, ...
- Variable Features:
- \#inBinaryClause, \#inTernaryClause, ...
- CombinedLRB, PropagationRate, \#Flips, …

Learning $P W$

$$
\left\langle F_{\text {feat }}(\phi), V_{\text {feat }}\left(v_{i}\right), V_{\text {feat }}\left(v_{j}\right), \text { label }:\left(p m\left(\phi, v_{i}\right)<p m\left(\phi, v_{j}\right)\right)\right\rangle
$$

- Formula Features:
- \#Variables, \#Clauses, AvgVariableNodeDegree, ...
- Variable Features:
- \#inBinaryClause, \#inTernaryClause, . .
- CombinedLRB, PropagationRate, \#Flips, …
- Feature selection:
- Addition pass: sorted by importance
- Deletion pass: sorted by computation time

Learning $P W$

$$
\left\langle F_{\text {feat }}(\phi), V_{\text {feat }}\left(v_{i}\right), V_{\text {feat }}\left(v_{j}\right), \text { label }:\left(p m\left(\phi, v_{i}\right)<p m\left(\phi, v_{j}\right)\right)\right\rangle
$$

■ Formula Features:

- \#Variables, \#Clauses, AvgVariableNodeDegree, ...
- Variable Features:
- \#inBinaryClause, \#inTernaryClause, . .
- CombinedLRB, PropagationRate, \#Flips, …
- Feature selection:
- Addition pass: sorted by importance
- Deletion pass: sorted by computation time

■ Random Forest: accuracy 80.72\%

Experimental Results - Cryptographic benchmark

- Framework: Painless
- Baseline: Painless-DC w/ flip splitting heuristic
- SHA-1 preimage

Part 3: BMM-based Heuristic Initialization

Overview

Heuristic Initialization

■ Branching heuristics: variable selection and value selection (polarity)

Heuristic Initialization

- Branching heuristics: variable selection and value selection (polarity)
- Usually look-back: make a decision based on the gathered search statistics

Heuristic Initialization

■ Branching heuristics: variable selection and value selection (polarity)

- Usually look-back: make a decision based on the gathered search statistics

■ At the start of search: no statistics available

Heuristic Initialization

■ Branching heuristics: variable selection and value selection (polarity)

- Usually look-back: make a decision based on the gathered search statistics
- At the start of search: no statistics available
- Goal: derive variable score and preferred value initial values, s.t. the runtime is improved.

Bayesian Moment Matching (BMM) for SAT

- For each variable: $P(x=T)$: probability of setting x to True

Bayesian Moment Matching (BMM) for SAT

■ For each variable: $P(x=T)$: probability of setting x to True
■ Goal: learn a distribution that satisfies all of the clauses

Bayesian Moment Matching (BMM) for SAT

- For each variable: $P(x=T)$: probability of setting x to True

■ Goal: learn a distribution that satisfies all of the clauses

Bayesian Moment Matching (BMM) for SAT

■ For each variable: $P(x=T)$: probability of setting x to True
■ Goal: learn a distribution that satisfies all of the clauses

Bayesian Moment Matching (BMM) for SAT

■ For each variable: $P(x=T)$: probability of setting x to True
■ Goal: learn a distribution that satisfies all of the clauses

Bayesian Moment Matching (BMM) for SAT

■ For each variable: $P(x=T)$: probability of setting x to True
■ Goal: learn a distribution that satisfies all of the clauses

Heuristic Initialization

- Polarity

■ BMM probabilities collectively represent an assignment

- Polarity $[x]= \begin{cases}\text { False, } & P(x=T)<0.5 \\ \text { True }, & P(x=T) \geq 0.5\end{cases}$
- Activity
- Give higher priority to variables that BMM is more confident about its polarity
- Activity $[x]= \begin{cases}1-P(x=T), & P(x=T)<0.5 \\ P(x=T), & P(x=T) \geq 0.5\end{cases}$

Experimental Results

- SHA-1 preimage benchmark
- Apple-to-apple comparison
- BMM on MapleSAT, Glucose and CryptoMiniSAT

Summary and Takeaways

Extending Reasoning Components

Improving Search Heuristics

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

ML for search heuristics optimization problems

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

Sequencing:
Pairwise ranking

ML for search heuristics optimization problems

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

Splitting Heuristics

Sequencing:
Pairwise ranking

ML for search heuristics optimization problems

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

$$
\begin{aligned}
& \text { more instances on } \\
& \text { SHA-1 preimage }
\end{aligned}
$$

```
Splitting Heuristics
```

Sequencing:
Pairwise ranking

ML for search heuristics optimization problems

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

$$
\begin{aligned}
& \text { more instances on } \\
& \text { SHA-1 preimage }
\end{aligned}
$$

```
Splitting Heuristics
```

Sequencing:
Pairwise ranking
Initialization:
BMM-based formulation of SAT

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

Improving Search Heuristics

Splitting Heuristics

Sequencing:
Pairwise ranking

Initialization of Variable and Value Selection

Initialization:
BMM-based formulation of SAT

- Key insights from literature
- Our designs
- Our results

Summary and Takeaways

- Key insights from literature
- Our designs
- Our results

Publications

```
[NLG+}\mp@subsup{}{}{+}17] Nejati, Liang, Gebotys, Czarnecki, Ganesh
    Adaptive restart and CEGAR-based solver for inverting cryptographic hash functions
    VSTTE }201
[NNS' 17] Nejati, Newsham, Scott, Liang, Gebotys, Poupart, Ganesh
    A propagation rate based splitting heuristic for divide-and-conquer solvers
    SAT }201
[NHGG18] Nejati, Horáček, Gebotys, Ganesh
        Algebraic fault attack on SHA hash functions using programmatic SAT solvers
        CP }201
    [NG19] Nejati, Ganesh
        CDCL(Crypto) SAT solvers for cryptanalysis
        CASCON 2019
[NDT+ 20] Nejati/Duan, Trimponias, Poupart, Ganesh
        Online bayesian moment matching based SAT solver heuristics
        ICML }202
[NLFG20] Nejati, Le Frioux, Ganesh
        A machine learning based splitting heuristic for divide-and-conquer solvers
        CP 2020
```

Thanks!
Questions?

围 Glenn De Witte.
Automatic sat-solver based search tools for cryptanalysis.
2017.

围 Claudia Fiorini, Enrico Martinelli, and Fabio Massacci.
How to Fake an RSA Signature by Encoding Modular Root Finding as a SAT Problem.
Discrete Applied Mathematics, 130(2):101-127, 2003.

目 Vijay Ganesh, Charles W. O'Donnell, Mate Soos, Srinivas Devadas, Martin C. Rinard, and Armando Solar-Lezama. Lynx: A programmatic SAT solver for the RNA-folding problem.
In Theory and Applications of Satisfiability Testing - SAT 2012

- 15th International Conference, Trento, Italy, June 17-20,

2012. Proceedings, pages 143-156, 2012.

Fabio Massacci.
Using Walk-SAT and Rel-SAT for Cryptographic Key Search.
In IJCAI, volume 1999, pages 290-295, 1999.

References iii

Eabio Massacci and Laura Marraro.
Logical Cryptanalysis as a SAT Problem.
Journal of Automated Reasoning, 24(1-2):165-203, 2000.
Paweł Morawiecki and Marian Srebrny.
A SAT-based Preimage Analysis of Reduced KECCAK Hash Functions.
Information Processing Letters, 113(10):392-397, 2013.
Ilya Mironov and Lintao Zhang.
Applications of SAT Solvers to Cryptanalysis of Hash Functions.
Theory and Applications of Satisfiability Testing-SAT 2006, pages 102-115, 2006.

References iv

Raeed Nejati, Haonan Duan, George Trimponias, Pascal Poupart, and Vijay Ganesh.
Online bayesian moment matching based sat solver heuristics.
2020.

囯 Saeed Nejati and Vijay Ganesh.
Cdcl (crypto) sat solvers for cryptanalysis.
In Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering, pages 311-316, 2019.
(Saeed Nejati, Jan Horáček, Catherine Gebotys, and Vijay Ganesh.
Algebraic fault attack on sha hash functions using programmatic sat solvers.
In International Conference on Principles and Practice of
Constraint Programming, pages 737-754. Springer, 2018.
围 Saeed Nejati, Ludovic Le Frioux, and Vijay Ganesh.
A machine learning based splitting heuristic for divide-and-conquer solvers.
2020.
(1) Saeed Nejati, Jia Hui Liang, Catherine Gebotys, Krzysztof Czarnecki, and Vijay Ganesh.
Adaptive restart and cegar-based solver for inverting cryptographic hash functions.
In Working Conference on Verified Software: Theories, Tools, and Experiments, pages 120-131. Springer, 2017.

囲 Saeed Nejati, Zack Newsham, Joseph Scott, Jia Hui Liang, Catherine Gebotys, Pascal Poupart, and Vijay Ganesh.
A propagation rate based splitting heuristic for divide-and-conquer solvers.
In International Conference on Theory and Applications of Satisfiability Testing, pages 251-260. Springer, 2017.

Regard Nossum.
SAT-based Preimage Attacks on SHA-1.
2012.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving sat and sat modulo theories: From an abstract davis-putnam-logemann-loveland procedure to dpll (t). Journal of the ACM (JACM), 53(6):937-977, 2006.

圊 Lukas Prokop.
Differential cryptanalysis with SAT solvers.
PhD thesis, University of Technology, Graz, 2016.

References viiii

國 Aaron Tomb.
Applying Satisfiability to the Analysis of Cryptography. https://github.com/GaloisInc/sat2015-crypto/blob/ master/slides/talk.pdf, 2015.

