
Machine Learning based SAT Solvers

for Cryptanalysis

Saeed Nejati

April 2nd, 2020

Motivation

SAT Solvers: Powerful general purpose search tools

Cryptanalysis: Searching a huge search space for a secret

key/value

SAT/SMT Solvers

Automated TestingProgram Analysis
Software/Hardware

Verification

Planning Combinatorics

2

Motivation

SAT Solvers: Powerful general purpose search tools

Cryptanalysis: Searching a huge search space for a secret

key/value

SAT/SMT Solvers

Automated TestingProgram Analysis
Software/Hardware

Verification

Planning Combinatorics

2

Motivation

SAT/SMT solvers have increasingly been used in
Cryptographic tasks

Finding cryptographic keys [Mas99, MM00]

Modular root finding [FMM03]

A collision attack [MZ06]

Preimage attacks [MS13], [Nos12]

Differential cryptanalysis [Pro16]

RX-differentials [Ashur2017], [DW17]

Verification of cryptographic primitives [Tom15]

However, they mostly used SAT solvers as a black-box

Question

Can we use SAT solvers in a white-box fashion?

(Tailor internals for a specific cryptographic problem)

3

Motivation

SAT/SMT solvers have increasingly been used in
Cryptographic tasks

Finding cryptographic keys [Mas99, MM00]

Modular root finding [FMM03]

A collision attack [MZ06]

Preimage attacks [MS13], [Nos12]

Differential cryptanalysis [Pro16]

RX-differentials [Ashur2017], [DW17]

Verification of cryptographic primitives [Tom15]

However, they mostly used SAT solvers as a black-box

Question

Can we use SAT solvers in a white-box fashion?

(Tailor internals for a specific cryptographic problem)

3

Motivation

SAT/SMT solvers have increasingly been used in
Cryptographic tasks

Finding cryptographic keys [Mas99, MM00]

Modular root finding [FMM03]

A collision attack [MZ06]

Preimage attacks [MS13], [Nos12]

Differential cryptanalysis [Pro16]

RX-differentials [Ashur2017], [DW17]

Verification of cryptographic primitives [Tom15]

However, they mostly used SAT solvers as a black-box

Question

Can we use SAT solvers in a white-box fashion?

(Tailor internals for a specific cryptographic problem)

3

Motivation

SAT/SMT solvers have increasingly been used in
Cryptographic tasks

Finding cryptographic keys [Mas99, MM00]

Modular root finding [FMM03]

A collision attack [MZ06]

Preimage attacks [MS13], [Nos12]

Differential cryptanalysis [Pro16]

RX-differentials [Ashur2017], [DW17]

Verification of cryptographic primitives [Tom15]

However, they mostly used SAT solvers as a black-box

Question

Can we use SAT solvers in a white-box fashion?

(Tailor internals for a specific cryptographic problem)

3

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization
Splitting

Unit Propagation

Unit Propagation
Unit Propagation

Programmatic Propagation

Conflict?

Conflict Analysis

Conflict Analysis
Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

Yes

YesYes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization
Splitting

Unit Propagation

Unit Propagation

Unit Propagation

Programmatic Propagation

Conflict?

Conflict Analysis

Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

Yes

YesYes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization
Splitting

Unit Propagation

Unit Propagation
Unit Propagation

Programmatic Propagation

Conflict?

Conflict Analysis

Conflict Analysis
Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

Yes

YesYes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization
Splitting

Unit PropagationUnit Propagation

Unit Propagation

Programmatic Propagation

Conflict?

Conflict AnalysisConflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

Yes

Yes

Yes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization

Splitting

Unit PropagationUnit Propagation

Unit Propagation

Programmatic Propagation

Conflict?

Conflict AnalysisConflict Analysis
Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

YesYes

Yes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization

Splitting

Unit PropagationUnit Propagation

Unit Propagation

Programmatic Propagation

Conflict?

Conflict AnalysisConflict Analysis
Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

YesYes

Yes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization

Splitting

Unit PropagationUnit Propagation

Unit Propagation

Programmatic Propagation

Conflict?

Conflict AnalysisConflict Analysis
Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

YesYes

Yes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization
Splitting

Unit PropagationUnit Propagation

Unit Propagation

Programmatic Propagation

Conflict?

Conflict AnalysisConflict Analysis
Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

YesYes

Yes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Opening up a SAT solver

Input Formula

Divide-and-Conquer Master

Pre-processing

Pre-processing

BMM Initialization
Splitting

Unit PropagationUnit Propagation

Unit Propagation

Programmatic Propagation

Conflict?

Conflict AnalysisConflict Analysis
Conflict Analysis

Programmatic Conflict Analysis

Conflict Analysis

Programmatic Conflict Analysis

BMM Update

Top Level?

Backjump

All Variables

Assigned?

Branching

Branching

UNSAT

SAT
No

YesYes

Yes

No

No

Yes

Yes

MapleCrypt

[LG+18]

4

Outline of Contributions

1 Extending reasoning components for cryptographic problems

CDCL(Crypto) framework ([NG19])

Algebraic fault attack ([NHGG18])

Differential cryptanalysis ([NG19])

2 Improving search heuristics

Machine learning for search heuristics optimization problems

Sequencing: Splitting heuristics ([NLFG20, NNS+17])

Initializing: Variable order and value selection (Branching

heuristics) ([NDT+20])

5

Part 1: CDCL(Crypto) Solvers

Overview

Input Formula

Pre-processing

Unit Propagation

Programmatic Propagation

Conflict?

Conflict Analysis

Programmatic Conflict Analysis
Top Level?

Backjump

All Variables

Assigned?

Branching

UNSAT

SAT
No

Yes

No

No

Yes

Yes

CDCL(Crypto): CDCL SAT solver with custom cryptographic reasoning

6

Lost in Translation

When encoding a constraint into SAT, some higher level

properties might be lost

Example: consider a pseudo-Boolean constraint
C : x+ y ≤ 0, (x, y ∈ {0, 1})

We trivially know: C → x̄ and C → ȳ.

We can encode it using a half-adder

sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

No unit clause to propagate!

7

Lost in Translation

When encoding a constraint into SAT, some higher level

properties might be lost

Example: consider a pseudo-Boolean constraint
C : x+ y ≤ 0, (x, y ∈ {0, 1})

We trivially know: C → x̄ and C → ȳ.

We can encode it using a half-adder

sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

No unit clause to propagate!

7

Lost in Translation

When encoding a constraint into SAT, some higher level

properties might be lost

Example: consider a pseudo-Boolean constraint
C : x+ y ≤ 0, (x, y ∈ {0, 1})

We trivially know: C → x̄ and C → ȳ.

We can encode it using a half-adder

sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

No unit clause to propagate!

7

Lost in Translation

When encoding a constraint into SAT, some higher level

properties might be lost

Example: consider a pseudo-Boolean constraint
C : x+ y ≤ 0, (x, y ∈ {0, 1})

We trivially know: C → x̄ and C → ȳ.

We can encode it using a half-adder

sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

No unit clause to propagate!

7

Lost in Translation

When encoding a constraint into SAT, some higher level

properties might be lost

Example: consider a pseudo-Boolean constraint
C : x+ y ≤ 0, (x, y ∈ {0, 1})

We trivially know: C → x̄ and C → ȳ.

We can encode it using a half-adder

sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

No unit clause to propagate!

7

Encoding and Propagation

Size
Good for

Unit Progpagation

Encoding

Ideal: Having “good” propagation while keeping the encoding

small

Extending propagation programmatically

Using Programmatic SAT architecture [GOS+12]

8

Encoding and Propagation

Size
Good for

Unit Progpagation

Encoding

Ideal: Having “good” propagation while keeping the encoding

small

Extending propagation programmatically

Using Programmatic SAT architecture [GOS+12]

8

Encoding and Propagation

Size
Good for

Unit Progpagation

Encoding

Ideal: Having “good” propagation while keeping the encoding

small

Extending propagation programmatically

Using Programmatic SAT architecture [GOS+12]

8

Encoding and Propagation

Size
Good for

Unit Progpagation

Encoding

Ideal: Having “good” propagation while keeping the encoding

small

Extending propagation programmatically

Using Programmatic SAT architecture [GOS+12]

8

Programmatic SAT

Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T) paradigm [NOT06]

Programmatic callbacks analyze the partial assignment

Propagation callback

Called after unit propagation

Checks for implied literals that are missed by unit propagation

Conflict analysis callback

Called after propagation is done

Checks if partial assignment cannot be extended to a full

solution

It can be seen as as solver for hybrid “CNF+C” constraints.

9

Programmatic SAT

Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T) paradigm [NOT06]

Programmatic callbacks analyze the partial assignment

Propagation callback

Called after unit propagation

Checks for implied literals that are missed by unit propagation

Conflict analysis callback

Called after propagation is done

Checks if partial assignment cannot be extended to a full

solution

It can be seen as as solver for hybrid “CNF+C” constraints.

9

Programmatic SAT

Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T) paradigm [NOT06]

Programmatic callbacks analyze the partial assignment

Propagation callback

Called after unit propagation

Checks for implied literals that are missed by unit propagation

Conflict analysis callback

Called after propagation is done

Checks if partial assignment cannot be extended to a full

solution

It can be seen as as solver for hybrid “CNF+C” constraints.

9

Programmatic SAT

Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T) paradigm [NOT06]

Programmatic callbacks analyze the partial assignment

Propagation callback

Called after unit propagation

Checks for implied literals that are missed by unit propagation

Conflict analysis callback

Called after propagation is done

Checks if partial assignment cannot be extended to a full

solution

It can be seen as as solver for hybrid “CNF+C” constraints.

9

Programmatic SAT

Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T) paradigm [NOT06]

Programmatic callbacks analyze the partial assignment

Propagation callback

Called after unit propagation

Checks for implied literals that are missed by unit propagation

Conflict analysis callback

Called after propagation is done

Checks if partial assignment cannot be extended to a full

solution

It can be seen as as solver for hybrid “CNF+C” constraints.

9

Programmatic SAT

Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T) paradigm [NOT06]

Programmatic callbacks analyze the partial assignment

Propagation callback

Called after unit propagation

Checks for implied literals that are missed by unit propagation

Conflict analysis callback

Called after propagation is done

Checks if partial assignment cannot be extended to a full

solution

It can be seen as as solver for hybrid “CNF+C” constraints.

9

Programmatic SAT

Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T) paradigm [NOT06]

Programmatic callbacks analyze the partial assignment

Propagation callback

Called after unit propagation

Checks for implied literals that are missed by unit propagation

Conflict analysis callback

Called after propagation is done

Checks if partial assignment cannot be extended to a full

solution

It can be seen as as solver for hybrid “CNF+C” constraints.

9

Programmatic SAT

Input Formula

Unit Propagation

Conflict?

Conflict Analysis

Programmatic

Propagation

New Reason

Clauses?

Programmatic

Conflict Analysis

New Conflict

Clauses?
Top Level?

Backjump

UNSAT

All Variables

Assigned?

Branching

SAT

No

YesNo

Yes

Yes

No

No

Yes

No

Yes

10

Case Studies

Applied this framework to two cryptographic problems:

Algebraic Fault Attack on SHA-1 and SHA-256

Differential Cryptanalysis of round-reduced version of SHA-256

11

Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function

Pre-image: given H, find an m, s.t. SHA(m) = H.

Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA′(m) = H ′

and repeat SHA′′(m) = H ′′

12

Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function

Pre-image: given H, find an m, s.t. SHA(m) = H.

Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA′(m) = H ′

and repeat SHA′′(m) = H ′′

12

Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function

Pre-image: given H, find an m, s.t. SHA(m) = H.

Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA′(m) = H ′

and repeat SHA′′(m) = H ′′

12

Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function

Pre-image: given H, find an m, s.t. SHA(m) = H.

Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA′(m) = H ′

and repeat SHA′′(m) = H ′′

12

Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function

Pre-image: given H, find an m, s.t. SHA(m) = H.

Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA′(m) = H ′

and repeat SHA′′(m) = H ′′

12

Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function

Pre-image: given H, find an m, s.t. SHA(m) = H.

Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA′(m) = H ′

and repeat SHA′′(m) = H ′′

12

Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function

Pre-image: given H, find an m, s.t. SHA(m) = H.

Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA′(m) = H ′

and repeat SHA′′(m) = H ′′

12

Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

Unaffected parts are just repeated.

Abstract them away.

13

Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

Unaffected parts are just repeated.

Abstract them away.

13

Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

Unaffected parts are just repeated.

Abstract them away.

13

Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

Unaffected parts are just repeated.

Abstract them away.

13

Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

Unaffected parts are just repeated.

Abstract them away.

13

Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

H ′
i = f64..79(f0..63(m0..63)⊕δi,m64..79)

Unaffected parts are just repeated.

Abstract them away.

13

Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

H ′
i = f64..79(f0..63(m0..63)︸ ︷︷ ︸⊕δi,m64..79)

Unaffected parts are just repeated.

Abstract them away.

13

Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

H ′
i = f64..79(f0..63(m0..63)︸ ︷︷ ︸⊕δi,m64..79)

Unaffected parts are just repeated. Abstract them away.

13

Algebraic Fault Analysis - Programmatic Approach

Base SAT solver: MapleSAT

Programmatic conflict analyzer

Embedding the verification loop

As soon as message word variables are set, they are ready to

be verified

Early embedded check vs. Straightforward check after solving

completely

Programmatic propagator

Improving the propagation flow of multi-operand additions

Generating reason clauses in each column addition when

output bits are missed

14

Algebraic Fault Analysis - Results

Recovering SHA-256

message bits

14.3x speed-up on

average

17 fewer faults were

needed compared to the

previous works

��

�����

������

������

������

������

������

������

������

������

�� ��� ��� ��� ��� ����

�
��
�

�
��
�

��������������������������

��������
�����������������������

�����������������������������
��������������������������

15

Part 2: Machine Learning based

Splitting Heuristics in Parallel SAT

Solvers

Overview

Input Formula

Divide-and-Conquer Master

Pre-processingSplitting

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

All Variables

Assigned?

Branching

UNSAT

SAT
No

Yes

No

No

Yes

Yes

16

Parallel SAT Solvers

Divide-and-Conquer Solvers

Split the formula into several sub-formulas and solve them in

parallel

Solvers share information

Splitting the formula φ:

Pick a variable x in φ

Generate two sub-formulas φ1 = φ[¬x] and φ2 = φ[x]

Repeat for φ1 and φ2

φ is SAT: At least one solver returns SAT

φ is UNSAT: All solvers return UNSAT

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

Split the formula into several sub-formulas and solve them in

parallel

Solvers share information

Splitting the formula φ:

Pick a variable x in φ

Generate two sub-formulas φ1 = φ[¬x] and φ2 = φ[x]

Repeat for φ1 and φ2

φ is SAT: At least one solver returns SAT

φ is UNSAT: All solvers return UNSAT

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

Split the formula into several sub-formulas and solve them in

parallel

Solvers share information

Splitting the formula φ:

Pick a variable x in φ

Generate two sub-formulas φ1 = φ[¬x] and φ2 = φ[x]

Repeat for φ1 and φ2

φ is SAT: At least one solver returns SAT

φ is UNSAT: All solvers return UNSAT

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

Split the formula into several sub-formulas and solve them in

parallel

Solvers share information

Splitting the formula φ:

Pick a variable x in φ

Generate two sub-formulas φ1 = φ[¬x] and φ2 = φ[x]

Repeat for φ1 and φ2

φ is SAT: At least one solver returns SAT

φ is UNSAT: All solvers return UNSAT

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

Split the formula into several sub-formulas and solve them in

parallel

Solvers share information

Splitting the formula φ:

Pick a variable x in φ

Generate two sub-formulas φ1 = φ[¬x] and φ2 = φ[x]

Repeat for φ1 and φ2

φ is SAT: At least one solver returns SAT

φ is UNSAT: All solvers return UNSAT

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

Split the formula into several sub-formulas and solve them in

parallel

Solvers share information

Splitting the formula φ:

Pick a variable x in φ

Generate two sub-formulas φ1 = φ[¬x] and φ2 = φ[x]

Repeat for φ1 and φ2

φ is SAT: At least one solver returns SAT

φ is UNSAT: All solvers return UNSAT

17

Parallel SAT Solvers

Divide-and-Conquer Solvers

Split the formula into several sub-formulas and solve them in

parallel

Solvers share information

Splitting the formula φ:

Pick a variable x in φ

Generate two sub-formulas φ1 = φ[¬x] and φ2 = φ[x]

Repeat for φ1 and φ2

φ is SAT: At least one solver returns SAT

φ is UNSAT: All solvers return UNSAT

17

Search Space Splitting

φ1 = φ ∧ ¬x2 ∧ x5 ∧ ¬x1
φ2 = φ ∧ ¬x2 ∧ x5 ∧ x1
φ3 = φ ∧ x2 ∧ x3

x2

x5

⊥
F

x1

φ1

F

φ2

T

T

F

x3

⊥
F

φ3

T

T

Question (Splitting Heuristic)

How to “divide” so the “conquer” becomes easier?

18

Search Space Splitting

φ1 = φ ∧ ¬x2 ∧ x5 ∧ ¬x1
φ2 = φ ∧ ¬x2 ∧ x5 ∧ x1
φ3 = φ ∧ x2 ∧ x3

x2

x5

⊥
F

x1

φ1

F

φ2

T

T

F

x3

⊥
F

φ3

T

T

Question (Splitting Heuristic)

How to “divide” so the “conquer” becomes easier?

18

Performance Metric

Q: How do we know a splitting variable is good?

We need to quantify the quality of a splitting variable.

Performance metric: pm : φ× v → R

SplittingHeuristic(φ) = argminv∈vars(φ){pm(φ, v)}
The ultimate goal is to minimize the runtime.

We define pm(φ, v): Total wall-clock runtime of solving φ

when splitting once and solving φ[v] and φ[¬v] in parallel.

19

Performance Metric

Q: How do we know a splitting variable is good?

We need to quantify the quality of a splitting variable.

Performance metric: pm : φ× v → R

SplittingHeuristic(φ) = argminv∈vars(φ){pm(φ, v)}
The ultimate goal is to minimize the runtime.

We define pm(φ, v): Total wall-clock runtime of solving φ

when splitting once and solving φ[v] and φ[¬v] in parallel.

19

Performance Metric

Q: How do we know a splitting variable is good?

We need to quantify the quality of a splitting variable.

Performance metric: pm : φ× v → R

SplittingHeuristic(φ) = argminv∈vars(φ){pm(φ, v)}
The ultimate goal is to minimize the runtime.

We define pm(φ, v): Total wall-clock runtime of solving φ

when splitting once and solving φ[v] and φ[¬v] in parallel.

19

Performance Metric

Q: How do we know a splitting variable is good?

We need to quantify the quality of a splitting variable.

Performance metric: pm : φ× v → R

SplittingHeuristic(φ) = argminv∈vars(φ){pm(φ, v)}

The ultimate goal is to minimize the runtime.

We define pm(φ, v): Total wall-clock runtime of solving φ

when splitting once and solving φ[v] and φ[¬v] in parallel.

19

Performance Metric

Q: How do we know a splitting variable is good?

We need to quantify the quality of a splitting variable.

Performance metric: pm : φ× v → R

SplittingHeuristic(φ) = argminv∈vars(φ){pm(φ, v)}
The ultimate goal is to minimize the runtime.

We define pm(φ, v): Total wall-clock runtime of solving φ

when splitting once and solving φ[v] and φ[¬v] in parallel.

19

Performance Metric

Q: How do we know a splitting variable is good?

We need to quantify the quality of a splitting variable.

Performance metric: pm : φ× v → R

SplittingHeuristic(φ) = argminv∈vars(φ){pm(φ, v)}
The ultimate goal is to minimize the runtime.

We define pm(φ, v): Total wall-clock runtime of solving φ

when splitting once and solving φ[v] and φ[¬v] in parallel.

19

Building the Splitting Heuristic

Computing this pm needs knowing the runtime and status of

sub-formulas

We don’t know the runtime a priori

We can build a machine learning model to predict runtime

Predicting runtime is a very challenging task

Observation: We are looking for a minimum element in a list

of elements ordered by pm

20

Building the Splitting Heuristic

Computing this pm needs knowing the runtime and status of

sub-formulas

We don’t know the runtime a priori

We can build a machine learning model to predict runtime

Predicting runtime is a very challenging task

Observation: We are looking for a minimum element in a list

of elements ordered by pm

20

Learn to Rank

Instead of predicting pm values for each item

Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and u in formula φ:

Q: is v better than u for splitting φ?

PW (φ, vi, vj) =

1, pm(φ, vi) < pm(φ, vj)

0, otherwise

21

Learn to Rank

Instead of predicting pm values for each item

Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and u in formula φ:

Q: is v better than u for splitting φ?

PW (φ, vi, vj) =

1, pm(φ, vi) < pm(φ, vj)

0, otherwise

21

Learn to Rank

Instead of predicting pm values for each item

Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and u in formula φ:

Q: is v better than u for splitting φ?

PW (φ, vi, vj) =

1, pm(φ, vi) < pm(φ, vj)

0, otherwise

21

Learn to Rank

Instead of predicting pm values for each item

Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and u in formula φ:

Q: is v better than u for splitting φ?

PW (φ, vi, vj) =

1, pm(φ, vi) < pm(φ, vj)

0, otherwise

21

Learn to Rank

Instead of predicting pm values for each item

Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and u in formula φ:

Q: is v better than u for splitting φ?

PW (φ, vi, vj) =

1, pm(φ, vi) < pm(φ, vj)

0, otherwise

21

Learning PW

〈Ffeat(φ), Vfeat(vi), Vfeat(vj), label : (pm(φ, vi) < pm(φ, vj))〉

Formula Features:

#Variables, #Clauses, AvgVariableNodeDegree, · · ·
Variable Features:

#inBinaryClause, #inTernaryClause, · · ·
CombinedLRB, PropagationRate, #Flips, · · ·

Feature selection:

Addition pass: sorted by importance

Deletion pass: sorted by computation time

Random Forest: accuracy 80.72%

22

Learning PW

〈Ffeat(φ), Vfeat(vi), Vfeat(vj), label : (pm(φ, vi) < pm(φ, vj))〉

Formula Features:

#Variables, #Clauses, AvgVariableNodeDegree, · · ·

Variable Features:

#inBinaryClause, #inTernaryClause, · · ·
CombinedLRB, PropagationRate, #Flips, · · ·

Feature selection:

Addition pass: sorted by importance

Deletion pass: sorted by computation time

Random Forest: accuracy 80.72%

22

Learning PW

〈Ffeat(φ), Vfeat(vi), Vfeat(vj), label : (pm(φ, vi) < pm(φ, vj))〉

Formula Features:

#Variables, #Clauses, AvgVariableNodeDegree, · · ·
Variable Features:

#inBinaryClause, #inTernaryClause, · · ·
CombinedLRB, PropagationRate, #Flips, · · ·

Feature selection:

Addition pass: sorted by importance

Deletion pass: sorted by computation time

Random Forest: accuracy 80.72%

22

Learning PW

〈Ffeat(φ), Vfeat(vi), Vfeat(vj), label : (pm(φ, vi) < pm(φ, vj))〉

Formula Features:

#Variables, #Clauses, AvgVariableNodeDegree, · · ·
Variable Features:

#inBinaryClause, #inTernaryClause, · · ·
CombinedLRB, PropagationRate, #Flips, · · ·

Feature selection:

Addition pass: sorted by importance

Deletion pass: sorted by computation time

Random Forest: accuracy 80.72%

22

Learning PW

〈Ffeat(φ), Vfeat(vi), Vfeat(vj), label : (pm(φ, vi) < pm(φ, vj))〉

Formula Features:

#Variables, #Clauses, AvgVariableNodeDegree, · · ·
Variable Features:

#inBinaryClause, #inTernaryClause, · · ·
CombinedLRB, PropagationRate, #Flips, · · ·

Feature selection:

Addition pass: sorted by importance

Deletion pass: sorted by computation time

Random Forest: accuracy 80.72%

22

Experimental Results - Cryptographic benchmark

Framework: Painless

Baseline: Painless-DC

w/ flip splitting

heuristic

SHA-1 preimage

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35 40 45

Ti
m

e
 (

s)

Number of instances solved

Treengeling
Painless-flip

Painless-DCML-Pairwise

23

Part 3: BMM-based Heuristic

Initialization

Overview

Input Formula

Pre-processing

BMM Initialization

Unit Propagation

Conflict?

Conflict Analysis

BMM Update
Top Level?

Backjump

All Variables

Assigned?

Branching

UNSAT

SAT
No

Yes

No

No

Yes

Yes

24

Heuristic Initialization

Branching heuristics: variable selection and value selection

(polarity)

Usually look-back: make a decision based on the gathered

search statistics

At the start of search: no statistics available

Goal: derive variable score and preferred value initial values,

s.t. the runtime is improved.

25

Heuristic Initialization

Branching heuristics: variable selection and value selection

(polarity)

Usually look-back: make a decision based on the gathered

search statistics

At the start of search: no statistics available

Goal: derive variable score and preferred value initial values,

s.t. the runtime is improved.

25

Heuristic Initialization

Branching heuristics: variable selection and value selection

(polarity)

Usually look-back: make a decision based on the gathered

search statistics

At the start of search: no statistics available

Goal: derive variable score and preferred value initial values,

s.t. the runtime is improved.

25

Heuristic Initialization

Branching heuristics: variable selection and value selection

(polarity)

Usually look-back: make a decision based on the gathered

search statistics

At the start of search: no statistics available

Goal: derive variable score and preferred value initial values,

s.t. the runtime is improved.

25

Bayesian Moment Matching (BMM) for SAT

For each variable: P (x = T): probability of setting x to True

Goal: learn a distribution that satisfies all of the clauses

x1

Prior Posterior

x̃1

x2 x̃2

x3 x̃3

··
·

··
·

··
·

xn x̃n

x1 ∨ ¬x2 ∨ x3
Evidence

Moment

Matching

Designed by Poupart, Jaini and Duan 26

Bayesian Moment Matching (BMM) for SAT

For each variable: P (x = T): probability of setting x to True

Goal: learn a distribution that satisfies all of the clauses

x1

Prior Posterior

x̃1

x2 x̃2

x3 x̃3

··
·

··
·

··
·

xn x̃n

x1 ∨ ¬x2 ∨ x3
Evidence

Moment

Matching

Designed by Poupart, Jaini and Duan 26

Bayesian Moment Matching (BMM) for SAT

For each variable: P (x = T): probability of setting x to True

Goal: learn a distribution that satisfies all of the clauses

x1

Prior

Posterior

x̃1

x2

x̃2

x3

x̃3

··
·

··
·

··
·

xn

x̃n

x1 ∨ ¬x2 ∨ x3
Evidence

Moment

Matching

Designed by Poupart, Jaini and Duan 26

Bayesian Moment Matching (BMM) for SAT

For each variable: P (x = T): probability of setting x to True

Goal: learn a distribution that satisfies all of the clauses

x1

Prior

Posterior

x̃1

x2

x̃2

x3

x̃3

··
·

··
·

··
·

xn

x̃n

x1 ∨ ¬x2 ∨ x3
Evidence

Moment

Matching

Designed by Poupart, Jaini and Duan 26

Bayesian Moment Matching (BMM) for SAT

For each variable: P (x = T): probability of setting x to True

Goal: learn a distribution that satisfies all of the clauses

x1

Prior Posterior

x̃1

x2

x̃2

x3

x̃3

··
·

··
·

··
·

xn

x̃n

x1 ∨ ¬x2 ∨ x3
Evidence

Moment

Matching

Designed by Poupart, Jaini and Duan 26

Bayesian Moment Matching (BMM) for SAT

For each variable: P (x = T): probability of setting x to True

Goal: learn a distribution that satisfies all of the clauses

x1

Prior Posterior

x̃1

x2 x̃2

x3 x̃3

··
·

··
·

··
·

xn x̃n

x1 ∨ ¬x2 ∨ x3
Evidence

Moment

Matching

Designed by Poupart, Jaini and Duan 26

Heuristic Initialization

Polarity

BMM probabilities collectively represent an assignment

Polarity[x] =

{
False, P (x = T) < 0.5

True, P (x = T) ≥ 0.5

Activity

Give higher priority to variables that BMM is more confident

about its polarity

Activity[x] =

{
1− P (x = T), P (x = T) < 0.5

P (x = T), P (x = T) ≥ 0.5

27

Experimental Results

SHA-1 preimage

benchmark

Apple-to-apple

comparison

BMM on MapleSAT,

Glucose and

CryptoMiniSAT
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

s)

Number of solved instances

MapleSAT
MapleSAT-BMM

Glucose
Glucose-BMM

CryptoMiniSAT
CryptoMiniSAT-BMM

28

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics

optimization problems

Sequencing:

Pairwise ranking

Initialization:

BMM-based

formulation of SAT

Splitting Heuristics

Initialization of

Variable and Value

Selection

more instances on

SHA-1 preimage

2x speedup on

SHA-1 preimage

Key insights from literature

Our designs

Our results

29

Publications

[NLG+17] Nejati, Liang, Gebotys, Czarnecki, Ganesh

Adaptive restart and CEGAR-based solver for inverting cryptographic hash functions

VSTTE 2017

[NNS+17] Nejati, Newsham, Scott, Liang, Gebotys, Poupart, Ganesh

A propagation rate based splitting heuristic for divide-and-conquer solvers

SAT 2017

[NHGG18] Nejati, Horáček, Gebotys, Ganesh

Algebraic fault attack on SHA hash functions using programmatic SAT solvers

CP 2018

[NG19] Nejati, Ganesh

CDCL(Crypto) SAT solvers for cryptanalysis

CASCON 2019

[NDT+20] Nejati/Duan, Trimponias, Poupart, Ganesh

Online bayesian moment matching based SAT solver heuristics

ICML 2020

[NLFG20] Nejati, Le Frioux, Ganesh

A machine learning based splitting heuristic for divide-and-conquer solvers

CP 2020

30

Thanks!

Questions?

References i

Glenn De Witte.

Automatic sat-solver based search tools for cryptanalysis.

2017.

Claudia Fiorini, Enrico Martinelli, and Fabio Massacci.

How to Fake an RSA Signature by Encoding Modular

Root Finding as a SAT Problem.

Discrete Applied Mathematics, 130(2):101–127, 2003.

32

References ii

Vijay Ganesh, Charles W. O’Donnell, Mate Soos, Srinivas

Devadas, Martin C. Rinard, and Armando Solar-Lezama.

Lynx: A programmatic SAT solver for the RNA-folding

problem.

In Theory and Applications of Satisfiability Testing - SAT 2012

- 15th International Conference, Trento, Italy, June 17-20,

2012. Proceedings, pages 143–156, 2012.

Fabio Massacci.

Using Walk-SAT and Rel-SAT for Cryptographic Key

Search.

In IJCAI, volume 1999, pages 290–295, 1999.

33

References iii

Fabio Massacci and Laura Marraro.

Logical Cryptanalysis as a SAT Problem.

Journal of Automated Reasoning, 24(1-2):165–203, 2000.

Pawe l Morawiecki and Marian Srebrny.

A SAT-based Preimage Analysis of Reduced KECCAK

Hash Functions.

Information Processing Letters, 113(10):392–397, 2013.

Ilya Mironov and Lintao Zhang.

Applications of SAT Solvers to Cryptanalysis of Hash

Functions.

Theory and Applications of Satisfiability Testing-SAT 2006,

pages 102–115, 2006.

34

References iv

Saeed Nejati, Haonan Duan, George Trimponias, Pascal

Poupart, and Vijay Ganesh.

Online bayesian moment matching based sat solver

heuristics.

2020.

Saeed Nejati and Vijay Ganesh.

Cdcl (crypto) sat solvers for cryptanalysis.

In Proceedings of the 29th Annual International Conference on

Computer Science and Software Engineering, pages 311–316,

2019.

35

References v

Saeed Nejati, Jan Horáček, Catherine Gebotys, and Vijay

Ganesh.

Algebraic fault attack on sha hash functions using

programmatic sat solvers.

In International Conference on Principles and Practice of

Constraint Programming, pages 737–754. Springer, 2018.

Saeed Nejati, Ludovic Le Frioux, and Vijay Ganesh.

A machine learning based splitting heuristic for

divide-and-conquer solvers.

2020.

36

References vi

Saeed Nejati, Jia Hui Liang, Catherine Gebotys, Krzysztof

Czarnecki, and Vijay Ganesh.

Adaptive restart and cegar-based solver for inverting

cryptographic hash functions.

In Working Conference on Verified Software: Theories, Tools,

and Experiments, pages 120–131. Springer, 2017.

Saeed Nejati, Zack Newsham, Joseph Scott, Jia Hui Liang,

Catherine Gebotys, Pascal Poupart, and Vijay Ganesh.

A propagation rate based splitting heuristic for

divide-and-conquer solvers.

In International Conference on Theory and Applications of

Satisfiability Testing, pages 251–260. Springer, 2017.

37

References vii

Vegard Nossum.

SAT-based Preimage Attacks on SHA-1.

2012.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Solving sat and sat modulo theories: From an abstract

davis–putnam–logemann–loveland procedure to dpll (t).

Journal of the ACM (JACM), 53(6):937–977, 2006.

Lukas Prokop.

Differential cryptanalysis with SAT solvers.

PhD thesis, University of Technology, Graz, 2016.

38

References viii

Aaron Tomb.

Applying Satisfiability to the Analysis of Cryptography.

https://github.com/GaloisInc/sat2015-crypto/blob/

master/slides/talk.pdf, 2015.

39

https://github.com/GaloisInc/sat2015-crypto/blob/master/slides/talk.pdf
https://github.com/GaloisInc/sat2015-crypto/blob/master/slides/talk.pdf

	Extending Reasoning Components for Cryptographic Problems
	Machine Learning based Splitting Heuristics
	Machine Learning based Initialization of Search Heuristics

