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Motivation

SAT/SMT solvers have increasingly been used in
Cryptographic tasks

Finding cryptographic keys [Mas99, MM00]

Modular root finding [FMM03]

A collision attack [MZ06]

Preimage attacks [MS13], [Nos12]

Differential cryptanalysis [Pro16]

RX-differentials [Ashur2017], [DW17]

Verification of cryptographic primitives [Tom15]

However, they mostly used SAT solvers as a black-box

Question

Can we use SAT solvers in a white-box fashion?

(Tailor internals for a specific cryptographic problem)
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Outline of Contributions

1 Extending reasoning components for cryptographic problems

CDCL(Crypto) framework ([NG19])

Algebraic fault attack ([NHGG18])

Differential cryptanalysis ([NG19])

2 Improving search heuristics

Machine learning for search heuristics optimization problems

Sequencing: Splitting heuristics ([NLFG20, NNS+17])

Initializing: Variable order and value selection (Branching

heuristics) ([NDT+20])
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Part 1: CDCL(Crypto) Solvers



Overview

Input Formula

Pre-processing
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CDCL(Crypto): CDCL SAT solver with custom cryptographic reasoning
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Lost in Translation

When encoding a constraint into SAT, some higher level

properties might be lost

Example: consider a pseudo-Boolean constraint
C : x+ y ≤ 0, (x, y ∈ {0, 1})

We trivially know: C → x̄ and C → ȳ.

We can encode it using a half-adder

sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

No unit clause to propagate!
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We can encode it using a half-adder

sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

No unit clause to propagate!

7



Lost in Translation

When encoding a constraint into SAT, some higher level

properties might be lost

Example: consider a pseudo-Boolean constraint
C : x+ y ≤ 0, (x, y ∈ {0, 1})

We trivially know: C → x̄ and C → ȳ.
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Encoding and Propagation

Size
Good for

Unit Progpagation

Encoding

Ideal: Having “good” propagation while keeping the encoding

small

Extending propagation programmatically

Using Programmatic SAT architecture [GOS+12]
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Programmatic SAT

Instrumenting a SAT solver with callbacks

Extending functionality of propagation and conflict analysis

Similar to and derived from CDCL(T ) paradigm [NOT06]

Programmatic callbacks analyze the partial assignment

Propagation callback

Called after unit propagation

Checks for implied literals that are missed by unit propagation

Conflict analysis callback

Called after propagation is done

Checks if partial assignment cannot be extended to a full

solution

It can be seen as as solver for hybrid “CNF+C” constraints.
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Programmatic SAT

Input Formula

Unit Propagation

Conflict?

Conflict Analysis

Programmatic

Propagation

New Reason

Clauses?

Programmatic

Conflict Analysis

New Conflict

Clauses?
Top Level?

Backjump

UNSAT

All Variables

Assigned?

Branching

SAT

No

YesNo

Yes

Yes

No

No

Yes

No

Yes

10



Case Studies

Applied this framework to two cryptographic problems:

Algebraic Fault Attack on SHA-1 and SHA-256

Differential Cryptanalysis of round-reduced version of SHA-256
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Algebraic Fault Analysis

Implementation attack on a crypto function with an

embedded secret

Inducing faults in the process of target function

Pre-image: given H, find an m, s.t. SHA(m) = H.

Very hard by itself.

Collect extra information (constraints) about the secret m

Inject fault in a target register: SHA′(m) = H ′

and repeat SHA′′(m) = H ′′
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Algebraic Fault Attack on SHA functions

SHA functions: Iteratively applying a round function

Each round mixes one word of message with state variables

SHA-1(m) : f79 ◦ f78 ◦ · · · ◦ f1 ◦ f0(m)

Slice the function into smaller number of rounds and inject

fault in between

Focus on last 16 rounds

SHA-1(m) :f79 ◦ · · · ◦ f64◦f63 ◦ · · · ◦ f1 ◦ f0(m)

Model fault injection with a random value

Unaffected parts are just repeated.

Abstract them away.
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Algebraic Fault Analysis - Programmatic Approach

Base SAT solver: MapleSAT

Programmatic conflict analyzer

Embedding the verification loop

As soon as message word variables are set, they are ready to

be verified

Early embedded check vs. Straightforward check after solving

completely

Programmatic propagator

Improving the propagation flow of multi-operand additions

Generating reason clauses in each column addition when

output bits are missed
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Algebraic Fault Analysis - Results

Recovering SHA-256

message bits

14.3x speed-up on

average

17 fewer faults were

needed compared to the

previous works
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Part 2: Machine Learning based

Splitting Heuristics in Parallel SAT

Solvers



Overview

Input Formula

Divide-and-Conquer Master

Pre-processingSplitting

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

All Variables

Assigned?

Branching

UNSAT

SAT
No

Yes

No

No

Yes

Yes
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Parallel SAT Solvers

Divide-and-Conquer Solvers

Split the formula into several sub-formulas and solve them in

parallel

Solvers share information

Splitting the formula φ:

Pick a variable x in φ

Generate two sub-formulas φ1 = φ[¬x] and φ2 = φ[x]

Repeat for φ1 and φ2

φ is SAT: At least one solver returns SAT

φ is UNSAT: All solvers return UNSAT
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Search Space Splitting

φ1 = φ ∧ ¬x2 ∧ x5 ∧ ¬x1
φ2 = φ ∧ ¬x2 ∧ x5 ∧ x1
φ3 = φ ∧ x2 ∧ x3
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Performance Metric

Q: How do we know a splitting variable is good?

We need to quantify the quality of a splitting variable.

Performance metric: pm : φ× v → R

SplittingHeuristic(φ) = argminv∈vars(φ){pm(φ, v)}
The ultimate goal is to minimize the runtime.

We define pm(φ, v): Total wall-clock runtime of solving φ

when splitting once and solving φ[v] and φ[¬v] in parallel.
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Building the Splitting Heuristic

Computing this pm needs knowing the runtime and status of

sub-formulas

We don’t know the runtime a priori

We can build a machine learning model to predict runtime

Predicting runtime is a very challenging task

Observation: We are looking for a minimum element in a list

of elements ordered by pm
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Learn to Rank

Instead of predicting pm values for each item

Predict how they compare to each other

This predictor can be used as a comparator to find the

minimum

Goal: given two variables v and u in formula φ:

Q: is v better than u for splitting φ?

PW (φ, vi, vj) =

1, pm(φ, vi) < pm(φ, vj)

0, otherwise
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Learning PW

〈Ffeat(φ), Vfeat(vi), Vfeat(vj), label : (pm(φ, vi) < pm(φ, vj))〉

Formula Features:

#Variables, #Clauses, AvgVariableNodeDegree, · · ·
Variable Features:

#inBinaryClause, #inTernaryClause, · · ·
CombinedLRB, PropagationRate, #Flips, · · ·

Feature selection:

Addition pass: sorted by importance

Deletion pass: sorted by computation time

Random Forest: accuracy 80.72%
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Experimental Results - Cryptographic benchmark

Framework: Painless

Baseline: Painless-DC

w/ flip splitting

heuristic
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Part 3: BMM-based Heuristic

Initialization



Overview

Input Formula

Pre-processing

BMM Initialization

Unit Propagation

Conflict?

Conflict Analysis

BMM Update
Top Level?

Backjump

All Variables

Assigned?

Branching

UNSAT

SAT
No

Yes

No

No

Yes

Yes
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Heuristic Initialization

Branching heuristics: variable selection and value selection

(polarity)

Usually look-back: make a decision based on the gathered

search statistics

At the start of search: no statistics available

Goal: derive variable score and preferred value initial values,

s.t. the runtime is improved.
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Bayesian Moment Matching (BMM) for SAT

For each variable: P (x = T ): probability of setting x to True

Goal: learn a distribution that satisfies all of the clauses

x1

Prior Posterior

x̃1

x2 x̃2

x3 x̃3

··
·

··
·

··
·

xn x̃n

x1 ∨ ¬x2 ∨ x3
Evidence

Moment

Matching

Designed by Poupart, Jaini and Duan 26
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Heuristic Initialization

Polarity

BMM probabilities collectively represent an assignment

Polarity[x] =

{
False, P (x = T ) < 0.5

True, P (x = T ) ≥ 0.5

Activity

Give higher priority to variables that BMM is more confident

about its polarity

Activity[x] =

{
1− P (x = T ), P (x = T ) < 0.5

P (x = T ), P (x = T ) ≥ 0.5
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Experimental Results

SHA-1 preimage

benchmark

Apple-to-apple

comparison

BMM on MapleSAT,

Glucose and

CryptoMiniSAT
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Summary and Takeaways

Extending Reasoning Components

Programmatic

SAT

CDCL(Crypto) framework

Algebraic Fault Attack

on SHA-1 and SHA-256

Recovering secret with 17 fewer faults

14.3x speedup

Differential Cryptanalysis

on SHA-256

SAT-based SHA-256 collision: 1 more round

Improving Search Heuristics

ML for search heuristics
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Sequencing:

Pairwise ranking
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VSTTE 2017
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SAT 2017
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