Toward Verification of Unchecked Codes in
Checked C

Saeed Nejati
Mentor: David Tarditi

University of Waterloo

Microsoft

December 6th, 2019

Motivation

m Checked C: An extension of C designed for adding memory
safety

Checked C

Motivation
m Checked C: An extension of C designed for adding memory

safety
m Bounds information for memory regions and pointers

Checked C

Motivation

m Checked C: An extension of C designed for adding memory

safety
m Bounds information for memory regions and pointers
m _Ptr<int> p

Checked C

Motivation

m Checked C: An extension of C designed for adding memory
safety
m Bounds information for memory regions and pointers
m _Ptr<int> p
B _Array_ptr<int> a : bound(a, a+n)

Checked C

Motivation

m Checked C: An extension of C designed for adding memory
safety
m Bounds information for memory regions and pointers
m _Ptr<int> p
B _Array_ptr<int> a : bound(a, a+n)

B _Nt_array_ptr<char> c : count(n)

Checked C

Motivation

m Checked C: An extension of C designed for adding memory
safety
m Bounds information for memory regions and pointers
m _Ptr<int> p
B _Array_ptr<int> a : bound(a, a+n)
B _Nt_array_ptr<char> c : count(n)
m Incremental adoption

Checked C

Motivation

m Checked C: An extension of C designed for adding memory
safety
m Bounds information for memory regions and pointers
m _Ptr<int> p
B _Array_ptr<int> a : bound(a, a+n)
B _Nt_array_ptr<char> c : count(n)
m Incremental adoption
m Inter-operation of checked and unchecked codes

[C J[Checked C]

Motivation

m Checked C: An extension of C designed for adding memory

safety

m Bounds information for memory regions and pointers
m _Ptr<int> p
B _Array_ptr<int> a : bound(a, a+n)
B _Nt_array_ptr<char> c : count(n)

m Incremental adoption
m Inter-operation of checked and unchecked codes

m Calling Unchecked functions from Checked

[C J[Checked C]

Motivation

m Checked C: An extension of C designed for adding memory

safety

m Bounds information for memory regions and pointers
m _Ptr<int> p
B _Array_ptr<int> a : bound(a, a+n)
B _Nt_array_ptr<char> c : count(n)

m Incremental adoption
m Inter-operation of checked and unchecked codes

m Calling Unchecked functions from Checked
m Only through Bounds-safe interface

Interface

Checked C

Motivation

m Checked C: An extension of C designed for adding memory

safety

m Bounds information for memory regions and pointers
m _Ptr<int> p
B _Array_ptr<int> a : bound(a, a+n)
B _Nt_array_ptr<char> c : count(n)

m Incremental adoption
m Inter-operation of checked and unchecked codes

m Calling Unchecked functions from Checked
m Only through Bounds-safe interface
E e.g. int *a : count(n)

Interface

Checked C

Motivation

m Checked C: An extension of C designed for adding memory

safety

m Bounds information for memory regions and pointers
m _Ptr<int> p
B _Array_ptr<int> a : bound(a, a+n)
B _Nt_array_ptr<char> c : count(n)

m Incremental adoption
m Inter-operation of checked and unchecked codes

m Calling Unchecked functions from Checked
m Only through Bounds-safe interface
m eg. int *a : count(n)

Question

How do we provide security guarantees for a mix of checked and
unchecked C codes?

Motivation

m Pointers to memory regions are passed to an unchecked
function

Motivation

m Pointers to memory regions are passed to an unchecked
function

m Bounds-safe interface: Partial specification of the boundaries

Motivation

m Pointers to memory regions are passed to an unchecked
function

m Bounds-safe interface: Partial specification of the boundaries

m Q: Does the function access those memory regions within
their boundaries?

Motivation

m Pointers to memory regions are passed to an unchecked
function

m Bounds-safe interface: Partial specification of the boundaries

m Q: Does the function access those memory regions within
their boundaries?

Goal
Verify the safety of unchecked functions against their
bounds-safe interface.

Outline

Bug Finding
m Clang Static Analyzer
m A New Checker
m Limitations
Verification
m Verification of Unchecked Functions
m Seahorn

m Limitations

Conclusions

Ep. 1: Finding Violations (Fantastic
Bugs and Where to Find them)

Clang Static Analyzer

m Checked C is implemented on top of Clang

Clang Static Analyzer

m Checked C is implemented on top of Clang
m Clang has a Static Analyzer

Clang Static Analyzer

m Checked C is implemented on top of Clang
m Clang has a Static Analyzer

m Use it to find memory bugs

Clang Static Analyzer

m Checked C is implemented on top of Clang
m Clang has a Static Analyzer

m Use it to find memory bugs

m Core engine -~ =~
Symbalic
m Explores all paths Engine Static Analyzer
m Tracks program states Core
m Maintains a hierarchical
R
memory model Checkers

Internal Solver

b -

Clang Static Analyzer

m Checked C is implemented on top of Clang
m Clang has a Static Analyzer

m Use it to find memory bugs

m Core engine -~ =~
Symbalic

m Explores all paths Engine Static Analyzer

m Tracks program states Core

m Maintains a hierarchical

R
memory model Checkers | e
t

m A set of checkers that look L), iemnal Solver

for specific types of bugs

Clang Static Analyzer

m Problem 1: None of the checkers make use of the available
Bounds information

Clang Static Analyzer

m Performs Symbolic Execution

int x; x : $1

int y; y o $2

int z = 2 * x; z : 2 x $1

int w = y - z; wo: $2 - (2 * $1)

Clang Static Analyzer

m Performs Symbolic Execution

int x; x : $1

int y; y o $2

int z = 2 * x; z : 2 *x $1

int w =y - z; w o $2 - (2 x $1)

m Internal solver

m Limited power on handling complex arithmetic
m Reasons about the ones with concrete starting point

Clang Static Analyzer

m Performs Symbolic Execution

int x; x : $1

int y; y o $2

int z = 2 * x; z : 2 *x $1

int w =y - z; w o $2 - (2 x $1)

m Internal solver

m Limited power on handling complex arithmetic

m Reasons about the ones with concrete starting point
m Bounds-safe information:

void foo(int *a: count(n), int n);

Clang Static Analyzer

m Problem 1: None of the checkers make use of the available
Bounds information.

m Problem 2: Bounds are commonly defined over non-concrete
symbols.

SimpleBounds Checker

A new checker:

m Reads and make use of Bounds expressions

m Uses SMT solvers for handling complex bounds checking
expression

Bounds Checking and Solvers

m Checking if the accessed location is within bounds

Bounds Checking and Solvers

m Checking if the accessed location is within bounds

B LowerBound < Indexr < Upper Bound

Bounds Checking and Solvers

m Checking if the accessed location is within bounds
B LowerBound < Indexr < Upper Bound

m Safety question: Is Index always in bounds?

Bounds Checking and Solvers

Checking if the accessed location is within bounds

B LowerBound < Indexr < Upper Bound

Safety question: Is Index always in bounds?

Query for the negated version:

Bounds Checking and Solvers

Checking if the accessed location is within bounds

B LowerBound < Indexr < Upper Bound

Safety question: Is Index always in bounds?
Query for the negated version:
m (Index < LowerBound) V (Index > Upper Bound)

Bounds Checking and Solvers

Checking if the accessed location is within bounds
B LowerBound < Indexr < Upper Bound

Safety question: Is Index always in bounds?

Query for the negated version:
m (Index < LowerBound) V (Index > Upper Bound)

m No solution: There is no index that goes out of bounds!

Bounds Checking and Solvers

Checking if the accessed location is within bounds
B LowerBound < Indexr < Upper Bound

Safety question: Is Index always in bounds?

Query for the negated version:
m (Index < LowerBound) V (Index > Upper Bound)

m No solution: There is no index that goes out of bounds!

i.e. It is safel

Bounds Checking and Solvers

Checking if the accessed location is within bounds
B LowerBound < Indexr < Upper Bound

Safety question: Is Index always in bounds?

Query for the negated version:
m (Index < LowerBound) V (Index > Upper Bound)

m No solution: There is no index that goes out of bounds!
m ie. Itis safe!

m Solution: working example that could breaks the code!

SimpleBounds Checker

void foo(int *p: count(m), int n);
// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)

10

SimpleBounds Checker

void foo(int *p: count(n), int n);
// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)
void foo(int *p, int n) {

10

SimpleBounds Checker

void foo(int *p: count(n), int n);
// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)
void foo(int *p, int n) {
int *a = p; // Aliasing can be handled

10

SimpleBounds Checker

void foo(int *p: count(n), int n);
// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)
void foo(int *p, int n) {
int *a = p; // Aliasing can be handled
aln / 2] = 1; (n/2<0)V (n/2>mn)

10

SimpleBounds Checker

void foo(int *p: count(n), int n);
// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)
void foo(int *p, int n) {
int *a = p; // Aliasing can be handled
aln / 2] = 1; (n/2<0)V (n/2>mn)
// this should be ok

10

SimpleBounds Checker

void foo(int *p: count(n), int n);
// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)
void foo(int *p, int n) {
int *a = p; // Aliasing can be handled
aln / 2] = 1; (n/2<0)V (n/2>mn)
// this should be ok
int k = n + n;

10

SimpleBounds Checker

void foo(int *p: count(n), int n);
// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)
void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

aln / 2] = 1; (n/2<0)V (n/2>mn)
// this should be ok

int k = n + n;

alk] = 1; (n+n<0)V(n+n>n)

10

SimpleBounds Checker

void foo(int *p: count(n), int n);
// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)
void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

aln / 2] = 1; (n/2<0)V (n/2>mn)
// this should be ok

int k = n + n;

alk] = 1; (n+n<0)V(n+n>n)

// Buffer Overflow!

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

aln / 2] = 1; (n/2<0)V (n/2>mn)
// this should be ok

int k = n + n;

alk] = 1; (n+n<0)V(n+n>n)

// Buffer Overflow!
int t = (n & 1) | ((n & 1) ~ 1);

// This is always 1

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

aln / 2] = 1; (n/2<0)V (n/2>mn)
// this should be ok

int k = n + n;

alk] = 1; (n+n<0)V(n+n>n)

// Buffer Overflow!
int t = (n & 1) | ((n & 1) ~ 1);

// This is always 1
alt - 2] = 1;

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

aln / 2] = 1; (n/2<0)V (n/2>mn)
// this should be ok

int k = n + n;

alk] = 1; (n+n<0)V(n+n>n)

// Buffer Overflow!
int t = (n & 1) | ((n & 1) ~ 1);

// This is always 1
alt - 2] = 1; // Buffer Underflow!

10

SimpleBounds Checker

void foo(int *p: count(n), int n);
// count(n) expands to bounds(p, p+n)
// Assume the range is not invalid (n > 0)
void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

aln / 2] = 1; (n/2<0)V (n/2>mn)
// this should be ok

int k = n + n;

alk] = 1; (n+n<0)V(n+n>n)

// Buffer Overflow!
int t = (n & 1) | ((n & 1) ~ 1);

// This is always 1
alt - 2] = 1; // Buffer Underflow!

10

SimpleBounds Checker

m ArrayBound checkers of clang static analyzer do not detect
these (underflow/overflow) bugs

11

SimpleBounds Checker

m ArrayBound checkers of clang static analyzer do not detect
these (underflow/overflow) bugs

m Merged into Master (PR #737)

11

Limitations

(Static \

m Clang Static Analyzer is as Anaiyser
good as its checkers

void foo(int *a: count(n), int n);
void foo(int *a, int n) {

m Checkers power is bound by ‘[ﬁ
\Hamj—h

Checker /

c . . al0] = 15 —
the information provided by e | Theorem Prover
Q[HQ—/

the core engine :

\
m Very limited power on loops
—_

and recursion

Limitations

m Clang Static Analyzer is as

good as its checkers

m Checkers power is bound by
the information provided by

the core engine

m Very limited power on loops

and recursion

void foo(int *a :
void foo(int *a :

int i;
for (i=0; i<n+1; i++)
ali] = 0;

count (n), int n);
count(n), int n) {

(Static \

afn-1
inti;
if ([

alf

else

)

void foo(int *a: count(n), int n);
void foo(int *a, int n) {

.

Analyzer

Checker /
Theorem Prover

) aﬂ
n-1]

0 N\—»
(

count(n), int n);
count(n), int n) {

void foo(int *a :
void foo(int *a :

int 1i;
for(i=n+1; i>=0; i--)
ali]l = 0;

12

Ep.2: Safety Checking (Fantastic
Bugs: The Crimes of Programmer)

Program Safety

m How checked regions are protected?

Program Safety

m How checked regions are protected?

m Statically known OOB are caught by compiler
m Otherwise a dynamic check is inserted to prevent runtime OOB

Program Safety

m How checked regions are protected?

m Statically known OOB are caught by compiler
m Otherwise a dynamic check is inserted to prevent runtime OOB

m Safety question: Is there an input that makes the program go
into a bad state?

Program Safety

m How checked regions are protected?

m Statically known OOB are caught by compiler
m Otherwise a dynamic check is inserted to prevent runtime OOB

m Safety question: Is there an input that makes the program go
into a bad state?

m Bad state is being out of bound

Program Safety

m How checked regions are protected?

m Statically known OOB are caught by compiler
m Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go
into a bad state?

Bad state is being out of bound

m i.e. Will any of the assertions fail?

Program Safety

m How checked regions are protected?

m Statically known OOB are caught by compiler
m Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go
into a bad state?

m Bad state is being out of bound

m i.e. Will any of the assertions fail?

Program Safety

m How checked regions are protected?

m Statically known OOB are caught by compiler
m Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go
into a bad state?

m Bad state is being out of bound

m i.e. Will any of the assertions fail?

= \\\\
s N
’ . , \
7 \
|
\ @ » Bad
\ ‘~‘_£__‘/Y
\ 7

13

Program Safety

m How checked regions are protected?

m Statically known OOB are caught by compiler
m Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go
into a bad state?

m Bad state is being out of bound

m i.e. Will any of the assertions fail?

//// .;?\ Init = Inv
: \Q 7 Bad Inv(X) ATr(X, X') = Inv(X')
N A Inv = -Bad

13

Seahorn

m Seahorn is a software verification framework

14

Seahorn

m Seahorn is a software verification framework

m For LLVM-based languages

14

Seahorn

m Seahorn is a software verification framework
m For LLVM-based languages

m Based on state-of-the-art model checking and abstract
interpretation

14

Seahorn

m Seahorn is a software verification framework

For LLVM-based languages

m Based on state-of-the-art model checking and abstract
interpretation

m Encodes the state transition as Constraint Horn Clauses

14

Seahorn

m Seahorn is a software verification framework

m For LLVM-based languages

m Based on state-of-the-art model checking and abstract

interpretation

m Encodes the state transition as Constraint Horn Clauses

{Pre: x_o0ld = x, y_old = y}

int n =

while (n--) {

int
int
x =
y =
}

{Post:

non_deterministic_value ();

t1
t2
t1
t2

[T]

x_old

+ y_old == x + y}

14

Unchecked Code Verification

m Problem 1: How do we put verification conditions at each
memory access location?

15

Unchecked Code Verification

m Problem 1: How do we put verification conditions at each
memory access location?

m Use the dynamic checks as verification conditions

15

Unchecked Code Verification

m Problem 1: How do we put verification conditions at each
memory access location?

m Use the dynamic checks as verification conditions

m Problem 2: There is no dynamic checks in unchecked codes

15

Unchecked Code Verification

m Problem 1: How do we put verification conditions at each
memory access location?

m Use the dynamic checks as verification conditions
m Problem 2: There is no dynamic checks in unchecked codes

m Use the same logic as in checked codes to inject checks for
unchecked pointers

15

Unchecked Code Verification

m Problem 1: How do we put verification conditions at each
memory access location?

m Use the dynamic checks as verification conditions
m Problem 2: There is no dynamic checks in unchecked codes

m Use the same logic as in checked codes to inject checks for
unchecked pointers

m More relaxed than being a checked code

15

Unchecked Code Verification

m Problem 1: How do we put verification conditions at each
memory access location?

m Use the dynamic checks as verification conditions
m Problem 2: There is no dynamic checks in unchecked codes

m Use the same logic as in checked codes to inject checks for
unchecked pointers

m More relaxed than being a checked code

m Assumption: all function calls within an unchecked region
should call to functions with bounds-safe interface

15

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

16

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

Add bounds for unchecked pointers

16

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

Add bounds for unchecked pointers

Inject verification sink functions (__VERIFIER error) in the
LLVM bit-code at dynamic check points

16

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

Add bounds for unchecked pointers

Inject verification sink functions (__VERIFIER error) in the
LLVM bit-code at dynamic check points

Query Seahorn back-end for program safety

16

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

Add bounds for unchecked pointers

Inject verification sink functions (__VERIFIER error) in the
LLVM bit-code at dynamic check points

Query Seahorn back-end for program safety

Merged into Master (PR #736)

16

Unchecked Code Verification

int sum(int *a : count(n), int n);
int sum(int *a, int n) {

int i = 0, s = 0;
for (i=0; i<n; i++) {
s += ali+1];

aln / 2] = 1;

return s;

Unchecked Code Verification

int sum(int *a : count(n),
int sum(int *a, int n) {
assume (a != NULL);

assume(n > 0);
int i = 0, s = 0;

for (i=0; i<n; i++) {
s += al[i+1];

aln / 2] = 1;

return s;

int n);

17

Unchecked Code Verification

int sum(int *a : count(n),

int sum(int *a, int n) {
assume (a != NULL);
assume(n > 0);

int i = 0, s = 0;

for(i=0; i<n; i++) {
s += ali+1];
sassert (i+1 < n);
sassert (i+1 >= 0);

aln / 2] = 1;

return s;

int n);

17

Unchecked Code Verification

int sum(int *a : count(n), int n);
int sum(int *a, int n) {
assume (a != NULL);

assume(n > 0);

int i = 0, s = 0;

for(i=0; i<n; i++) {
s += ali+1];
sassert (i+1 < n);
sassert (i+1 >= 0);

aln / 2] = 1;

return s;

The result should be "SAT": there exists a path to failing an
assertion!

17

Limitations

m Checked C+Seahorn is sound if the conditions are sound
m Conditions are sound if the bounds inference is sound

m Seahorn works completely on LLVM side.

18

Conclusions

Demo.

Summary

Having an unchecked function with bounds-safe interface:

m Bounds-aware static analyzer checker finding OOB accesses

m Safety verification with Checked C+Seahorn

m ldentifying limitations of static analysis and verification in
Checked C

m Paths for future work in verification of checked/unchecked C
codes

20

Future Work

m Bounds for unchecked pointers:

m back-propagating the assumptions
m forward-propagating the bounds

m Improving bounds inference

m Expanding the checker

21

Thanks!

Questions?

	Bug Finding
	Clang Static Analyzer
	A New Checker
	Limitations

	Verification
	Verification of Unchecked Functions
	Seahorn
	Limitations

	Conclusions

