
Toward Verification of Unchecked Codes in

Checked C

Saeed Nejati

Mentor: David Tarditi

University of Waterloo

Microsoft

December 6th, 2019

Motivation

Checked C: An extension of C designed for adding memory

safety

Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption

Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked

Only through Bounds-safe interface

e.g. int *a : count(n)

C

Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption

Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked

Only through Bounds-safe interface

e.g. int *a : count(n)

C

Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption

Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked

Only through Bounds-safe interface

e.g. int *a : count(n)

C

Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption

Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked

Only through Bounds-safe interface

e.g. int *a : count(n)

C

Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption

Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked

Only through Bounds-safe interface

e.g. int *a : count(n)

C

Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption

Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked

Only through Bounds-safe interface

e.g. int *a : count(n)

C

Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption
Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked

Only through Bounds-safe interface

e.g. int *a : count(n)

C Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption
Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked

Only through Bounds-safe interface

e.g. int *a : count(n)

C Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption
Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked
Only through Bounds-safe interface

e.g. int *a : count(n)

C Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption
Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked
Only through Bounds-safe interface

e.g. int *a : count(n)

C Checked C

Interface

1

Motivation

Checked C: An extension of C designed for adding memory

safety
Bounds information for memory regions and pointers

_Ptr<int> p

_Array_ptr<int> a : bound(a, a+n)

_Nt_array_ptr<char> c : count(n)

Incremental adoption
Inter-operation of checked and unchecked codes

Calling Unchecked functions from Checked
Only through Bounds-safe interface

e.g. int *a : count(n)

Question

How do we provide security guarantees for a mix of checked and

unchecked C codes?

1

Motivation

Pointers to memory regions are passed to an unchecked

function

Bounds-safe interface: Partial specification of the boundaries

Q: Does the function access those memory regions within

their boundaries?

Goal

Verify the safety of unchecked functions against their

bounds-safe interface.

2

Motivation

Pointers to memory regions are passed to an unchecked

function

Bounds-safe interface: Partial specification of the boundaries

Q: Does the function access those memory regions within

their boundaries?

Goal

Verify the safety of unchecked functions against their

bounds-safe interface.

2

Motivation

Pointers to memory regions are passed to an unchecked

function

Bounds-safe interface: Partial specification of the boundaries

Q: Does the function access those memory regions within

their boundaries?

Goal

Verify the safety of unchecked functions against their

bounds-safe interface.

2

Motivation

Pointers to memory regions are passed to an unchecked

function

Bounds-safe interface: Partial specification of the boundaries

Q: Does the function access those memory regions within

their boundaries?

Goal

Verify the safety of unchecked functions against their

bounds-safe interface.

2

Outline

1 Bug Finding

Clang Static Analyzer

A New Checker

Limitations

2 Verification

Verification of Unchecked Functions

Seahorn

Limitations

3 Conclusions

3

Ep. 1: Finding Violations (Fantastic

Bugs and Where to Find them)

Clang Static Analyzer

Checked C is implemented on top of Clang

Clang has a Static Analyzer

Use it to find memory bugs

Core engine

Explores all paths

Tracks program states

Maintains a hierarchical

memory model

A set of checkers that look

for specific types of bugs

4

Clang Static Analyzer

Checked C is implemented on top of Clang

Clang has a Static Analyzer

Use it to find memory bugs

Core engine

Explores all paths

Tracks program states

Maintains a hierarchical

memory model

A set of checkers that look

for specific types of bugs

4

Clang Static Analyzer

Checked C is implemented on top of Clang

Clang has a Static Analyzer

Use it to find memory bugs

Core engine

Explores all paths

Tracks program states

Maintains a hierarchical

memory model

A set of checkers that look

for specific types of bugs

4

Clang Static Analyzer

Checked C is implemented on top of Clang

Clang has a Static Analyzer

Use it to find memory bugs

Core engine

Explores all paths

Tracks program states

Maintains a hierarchical

memory model

A set of checkers that look

for specific types of bugs

4

Clang Static Analyzer

Checked C is implemented on top of Clang

Clang has a Static Analyzer

Use it to find memory bugs

Core engine

Explores all paths

Tracks program states

Maintains a hierarchical

memory model

A set of checkers that look

for specific types of bugs

4

Clang Static Analyzer

Problem 1: None of the checkers make use of the available

Bounds information

5

Clang Static Analyzer

Performs Symbolic Execution

int x;

int y;

int z = 2 * x;

int w = y - z;

x : $1

y : $2

z : 2 * $1

w : $2 - (2 * $1)

Internal solver

Limited power on handling complex arithmetic

Reasons about the ones with concrete starting point

Bounds-safe information:

void foo(int *a: count(n), int n);

6

Clang Static Analyzer

Performs Symbolic Execution

int x;

int y;

int z = 2 * x;

int w = y - z;

x : $1

y : $2

z : 2 * $1

w : $2 - (2 * $1)

Internal solver

Limited power on handling complex arithmetic

Reasons about the ones with concrete starting point

Bounds-safe information:

void foo(int *a: count(n), int n);

6

Clang Static Analyzer

Performs Symbolic Execution

int x;

int y;

int z = 2 * x;

int w = y - z;

x : $1

y : $2

z : 2 * $1

w : $2 - (2 * $1)

Internal solver

Limited power on handling complex arithmetic

Reasons about the ones with concrete starting point

Bounds-safe information:

void foo(int *a: count(n), int n);

6

Clang Static Analyzer

Problem 1: None of the checkers make use of the available

Bounds information.

Problem 2: Bounds are commonly defined over non-concrete

symbols.

7

SimpleBounds Checker

A new checker:

Reads and make use of Bounds expressions

Uses SMT solvers for handling complex bounds checking

expression

8

Bounds Checking and Solvers

Checking if the accessed location is within bounds

LowerBound ≤ Index < UpperBound

Safety question: Is Index always in bounds?

Query for the negated version:

(Index < LowerBound) ∨ (Index ≥ UpperBound)

No solution: There is no index that goes out of bounds!

i.e. It is safe!

Solution: working example that could breaks the code!

9

Bounds Checking and Solvers

Checking if the accessed location is within bounds

LowerBound ≤ Index < UpperBound

Safety question: Is Index always in bounds?

Query for the negated version:

(Index < LowerBound) ∨ (Index ≥ UpperBound)

No solution: There is no index that goes out of bounds!

i.e. It is safe!

Solution: working example that could breaks the code!

9

Bounds Checking and Solvers

Checking if the accessed location is within bounds

LowerBound ≤ Index < UpperBound

Safety question: Is Index always in bounds?

Query for the negated version:

(Index < LowerBound) ∨ (Index ≥ UpperBound)

No solution: There is no index that goes out of bounds!

i.e. It is safe!

Solution: working example that could breaks the code!

9

Bounds Checking and Solvers

Checking if the accessed location is within bounds

LowerBound ≤ Index < UpperBound

Safety question: Is Index always in bounds?

Query for the negated version:

(Index < LowerBound) ∨ (Index ≥ UpperBound)

No solution: There is no index that goes out of bounds!

i.e. It is safe!

Solution: working example that could breaks the code!

9

Bounds Checking and Solvers

Checking if the accessed location is within bounds

LowerBound ≤ Index < UpperBound

Safety question: Is Index always in bounds?

Query for the negated version:

(Index < LowerBound) ∨ (Index ≥ UpperBound)

No solution: There is no index that goes out of bounds!

i.e. It is safe!

Solution: working example that could breaks the code!

9

Bounds Checking and Solvers

Checking if the accessed location is within bounds

LowerBound ≤ Index < UpperBound

Safety question: Is Index always in bounds?

Query for the negated version:

(Index < LowerBound) ∨ (Index ≥ UpperBound)

No solution: There is no index that goes out of bounds!

i.e. It is safe!

Solution: working example that could breaks the code!

9

Bounds Checking and Solvers

Checking if the accessed location is within bounds

LowerBound ≤ Index < UpperBound

Safety question: Is Index always in bounds?

Query for the negated version:

(Index < LowerBound) ∨ (Index ≥ UpperBound)

No solution: There is no index that goes out of bounds!

i.e. It is safe!

Solution: working example that could breaks the code!

9

Bounds Checking and Solvers

Checking if the accessed location is within bounds

LowerBound ≤ Index < UpperBound

Safety question: Is Index always in bounds?

Query for the negated version:

(Index < LowerBound) ∨ (Index ≥ UpperBound)

No solution: There is no index that goes out of bounds!

i.e. It is safe!

Solution: working example that could breaks the code!

9

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1;

// Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

void foo(int *p: count(n), int n);

// count(n) expands to bounds(p, p+n)

// Assume the range is not invalid (n > 0)

void foo(int *p, int n) {

int *a = p; // Aliasing can be handled

a[n / 2] = 1; (n/2 < 0) ∨ (n/2 ≥ n)

// this should be ok

int k = n + n;

a[k] = 1; (n+ n < 0) ∨ (n+ n ≥ n)

// Buffer Overflow!

int t = (n & 1) | ((n & 1) ^ 1);

// This is always 1

a[t - 2] = 1; // Buffer Underflow!

}

10

SimpleBounds Checker

ArrayBound checkers of clang static analyzer do not detect

these (underflow/overflow) bugs

Merged into Master (PR #737)

11

SimpleBounds Checker

ArrayBound checkers of clang static analyzer do not detect

these (underflow/overflow) bugs

Merged into Master (PR #737)

11

Limitations

Clang Static Analyzer is as

good as its checkers

Checkers power is bound by

the information provided by

the core engine

Very limited power on loops

and recursion

void foo(int *a : count(n), int n);

void foo(int *a : count(n), int n) {

int i;

for(i=0; i<n+1; i++)

a[i] = 0;

}

void foo(int *a : count(n), int n);

void foo(int *a : count(n), int n) {

int i;

for(i=n+1; i>=0; i--)

a[i] = 0;

}

12

Limitations

Clang Static Analyzer is as

good as its checkers

Checkers power is bound by

the information provided by

the core engine

Very limited power on loops

and recursion

void foo(int *a : count(n), int n);

void foo(int *a : count(n), int n) {

int i;

for(i=0; i<n+1; i++)

a[i] = 0;

}

void foo(int *a : count(n), int n);

void foo(int *a : count(n), int n) {

int i;

for(i=n+1; i>=0; i--)

a[i] = 0;

}

12

Ep.2: Safety Checking (Fantastic

Bugs: The Crimes of Programmer)

Program Safety

How checked regions are protected?

Statically known OOB are caught by compiler

Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go

into a bad state?

Bad state is being out of bound

i.e. Will any of the assertions fail?

Init Bad?

Init⇒ Inv

Inv(X) ∧ Tr(X,X ′)⇒ Inv(X ′)

Inv ⇒ ¬Bad

13

Program Safety

How checked regions are protected?

Statically known OOB are caught by compiler

Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go

into a bad state?

Bad state is being out of bound

i.e. Will any of the assertions fail?

Init Bad?

Init⇒ Inv

Inv(X) ∧ Tr(X,X ′)⇒ Inv(X ′)

Inv ⇒ ¬Bad

13

Program Safety

How checked regions are protected?

Statically known OOB are caught by compiler

Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go

into a bad state?

Bad state is being out of bound

i.e. Will any of the assertions fail?

Init Bad?

Init⇒ Inv

Inv(X) ∧ Tr(X,X ′)⇒ Inv(X ′)

Inv ⇒ ¬Bad

13

Program Safety

How checked regions are protected?

Statically known OOB are caught by compiler

Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go

into a bad state?

Bad state is being out of bound

i.e. Will any of the assertions fail?

Init Bad?

Init⇒ Inv

Inv(X) ∧ Tr(X,X ′)⇒ Inv(X ′)

Inv ⇒ ¬Bad

13

Program Safety

How checked regions are protected?

Statically known OOB are caught by compiler

Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go

into a bad state?

Bad state is being out of bound

i.e. Will any of the assertions fail?

Init Bad?

Init⇒ Inv

Inv(X) ∧ Tr(X,X ′)⇒ Inv(X ′)

Inv ⇒ ¬Bad

13

Program Safety

How checked regions are protected?

Statically known OOB are caught by compiler

Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go

into a bad state?

Bad state is being out of bound

i.e. Will any of the assertions fail?

Init Bad?

Init⇒ Inv

Inv(X) ∧ Tr(X,X ′)⇒ Inv(X ′)

Inv ⇒ ¬Bad

13

Program Safety

How checked regions are protected?

Statically known OOB are caught by compiler

Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go

into a bad state?

Bad state is being out of bound

i.e. Will any of the assertions fail?

Init Bad?

Init⇒ Inv

Inv(X) ∧ Tr(X,X ′)⇒ Inv(X ′)

Inv ⇒ ¬Bad

13

Program Safety

How checked regions are protected?

Statically known OOB are caught by compiler

Otherwise a dynamic check is inserted to prevent runtime OOB

Safety question: Is there an input that makes the program go

into a bad state?

Bad state is being out of bound

i.e. Will any of the assertions fail?

Init Bad?

Init⇒ Inv

Inv(X) ∧ Tr(X,X ′)⇒ Inv(X ′)

Inv ⇒ ¬Bad

13

Seahorn

Seahorn is a software verification framework

For LLVM-based languages

Based on state-of-the-art model checking and abstract

interpretation

Encodes the state transition as Constraint Horn Clauses

{Pre: x_old = x, y_old = y}

int n = non_deterministic_value ();

while (n--) {

int t1 = x;

int t2 = y;

x = t1 + 1;

y = t2 - 1;

}

{Post: x_old + y_old == x + y}

14

Seahorn

Seahorn is a software verification framework

For LLVM-based languages

Based on state-of-the-art model checking and abstract

interpretation

Encodes the state transition as Constraint Horn Clauses

{Pre: x_old = x, y_old = y}

int n = non_deterministic_value ();

while (n--) {

int t1 = x;

int t2 = y;

x = t1 + 1;

y = t2 - 1;

}

{Post: x_old + y_old == x + y}

14

Seahorn

Seahorn is a software verification framework

For LLVM-based languages

Based on state-of-the-art model checking and abstract

interpretation

Encodes the state transition as Constraint Horn Clauses

{Pre: x_old = x, y_old = y}

int n = non_deterministic_value ();

while (n--) {

int t1 = x;

int t2 = y;

x = t1 + 1;

y = t2 - 1;

}

{Post: x_old + y_old == x + y}

14

Seahorn

Seahorn is a software verification framework

For LLVM-based languages

Based on state-of-the-art model checking and abstract

interpretation

Encodes the state transition as Constraint Horn Clauses

{Pre: x_old = x, y_old = y}

int n = non_deterministic_value ();

while (n--) {

int t1 = x;

int t2 = y;

x = t1 + 1;

y = t2 - 1;

}

{Post: x_old + y_old == x + y}

14

Seahorn

Seahorn is a software verification framework

For LLVM-based languages

Based on state-of-the-art model checking and abstract

interpretation

Encodes the state transition as Constraint Horn Clauses

{Pre: x_old = x, y_old = y}

int n = non_deterministic_value ();

while (n--) {

int t1 = x;

int t2 = y;

x = t1 + 1;

y = t2 - 1;

}

{Post: x_old + y_old == x + y}

14

Unchecked Code Verification

Problem 1: How do we put verification conditions at each

memory access location?

Use the dynamic checks as verification conditions

Problem 2: There is no dynamic checks in unchecked codes

Use the same logic as in checked codes to inject checks for

unchecked pointers

More relaxed than being a checked code

Assumption: all function calls within an unchecked region

should call to functions with bounds-safe interface

15

Unchecked Code Verification

Problem 1: How do we put verification conditions at each

memory access location?

Use the dynamic checks as verification conditions

Problem 2: There is no dynamic checks in unchecked codes

Use the same logic as in checked codes to inject checks for

unchecked pointers

More relaxed than being a checked code

Assumption: all function calls within an unchecked region

should call to functions with bounds-safe interface

15

Unchecked Code Verification

Problem 1: How do we put verification conditions at each

memory access location?

Use the dynamic checks as verification conditions

Problem 2: There is no dynamic checks in unchecked codes

Use the same logic as in checked codes to inject checks for

unchecked pointers

More relaxed than being a checked code

Assumption: all function calls within an unchecked region

should call to functions with bounds-safe interface

15

Unchecked Code Verification

Problem 1: How do we put verification conditions at each

memory access location?

Use the dynamic checks as verification conditions

Problem 2: There is no dynamic checks in unchecked codes

Use the same logic as in checked codes to inject checks for

unchecked pointers

More relaxed than being a checked code

Assumption: all function calls within an unchecked region

should call to functions with bounds-safe interface

15

Unchecked Code Verification

Problem 1: How do we put verification conditions at each

memory access location?

Use the dynamic checks as verification conditions

Problem 2: There is no dynamic checks in unchecked codes

Use the same logic as in checked codes to inject checks for

unchecked pointers

More relaxed than being a checked code

Assumption: all function calls within an unchecked region

should call to functions with bounds-safe interface

15

Unchecked Code Verification

Problem 1: How do we put verification conditions at each

memory access location?

Use the dynamic checks as verification conditions

Problem 2: There is no dynamic checks in unchecked codes

Use the same logic as in checked codes to inject checks for

unchecked pointers

More relaxed than being a checked code

Assumption: all function calls within an unchecked region

should call to functions with bounds-safe interface

15

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

1 Add bounds for unchecked pointers

2 Inject verification sink functions (VERIFIER error) in the

LLVM bit-code at dynamic check points

3 Query Seahorn back-end for program safety

Merged into Master (PR #736)

16

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

1 Add bounds for unchecked pointers

2 Inject verification sink functions (VERIFIER error) in the

LLVM bit-code at dynamic check points

3 Query Seahorn back-end for program safety

Merged into Master (PR #736)

16

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

1 Add bounds for unchecked pointers

2 Inject verification sink functions (VERIFIER error) in the

LLVM bit-code at dynamic check points

3 Query Seahorn back-end for program safety

Merged into Master (PR #736)

16

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

1 Add bounds for unchecked pointers

2 Inject verification sink functions (VERIFIER error) in the

LLVM bit-code at dynamic check points

3 Query Seahorn back-end for program safety

Merged into Master (PR #736)

16

Unchecked Code Verification

Replace the front-end of Seahorn with Checked C clang

1 Add bounds for unchecked pointers

2 Inject verification sink functions (VERIFIER error) in the

LLVM bit-code at dynamic check points

3 Query Seahorn back-end for program safety

Merged into Master (PR #736)

16

Unchecked Code Verification

int sum(int *a : count(n), int n);

int sum(int *a, int n) {

assume(a != NULL);

assume(n > 0);

int i = 0, s = 0;

for(i=0; i<n; i++) {

s += a[i+1];

sassert(i+1 < n);

sassert(i+1 >= 0);

}

a[n / 2] = 1;

return s;

}

The result should be ”SAT”: there exists a path to failing an

assertion!

17

Unchecked Code Verification

int sum(int *a : count(n), int n);

int sum(int *a, int n) {

assume(a != NULL);

assume(n > 0);

int i = 0, s = 0;

for(i=0; i<n; i++) {

s += a[i+1];

sassert(i+1 < n);

sassert(i+1 >= 0);

}

a[n / 2] = 1;

return s;

}

The result should be ”SAT”: there exists a path to failing an

assertion!

17

Unchecked Code Verification

int sum(int *a : count(n), int n);

int sum(int *a, int n) {

assume(a != NULL);

assume(n > 0);

int i = 0, s = 0;

for(i=0; i<n; i++) {

s += a[i+1];

sassert(i+1 < n);

sassert(i+1 >= 0);

}

a[n / 2] = 1;

return s;

}

The result should be ”SAT”: there exists a path to failing an

assertion!

17

Unchecked Code Verification

int sum(int *a : count(n), int n);

int sum(int *a, int n) {

assume(a != NULL);

assume(n > 0);

int i = 0, s = 0;

for(i=0; i<n; i++) {

s += a[i+1];

sassert(i+1 < n);

sassert(i+1 >= 0);

}

a[n / 2] = 1;

return s;

}

The result should be ”SAT”: there exists a path to failing an

assertion! 17

Limitations

Checked C+Seahorn is sound if the conditions are sound

Conditions are sound if the bounds inference is sound

Seahorn works completely on LLVM side.

18

Conclusions

Demo.

Summary

Having an unchecked function with bounds-safe interface:

Bounds-aware static analyzer checker finding OOB accesses

Safety verification with Checked C+Seahorn

Identifying limitations of static analysis and verification in

Checked C

Paths for future work in verification of checked/unchecked C

codes

20

Future Work

Bounds for unchecked pointers:

back-propagating the assumptions

forward-propagating the bounds

Improving bounds inference

Expanding the checker

21

Thanks!

Questions?

	Bug Finding
	Clang Static Analyzer
	A New Checker
	Limitations

	Verification
	Verification of Unchecked Functions
	Seahorn
	Limitations

	Conclusions

