A Propagation Rate based Splitting Heuristic for

Divide-and-Conquer Solvers

Saeed Nejati, Zack Newsham, Joseph Scott, Jimmy Liang,
Catherine Gebotys, Pascal Poupart and Vijay Ganesh

University of Waterloo

September 1st
SAT 2017

Introduction

@ Parallel SAT solvers (Availability of computing nodes)
@ Portfolio, Divide-and-Conquer

@ Divide-and-Conquer: Split the formula into several
sub-formulas and solve them using CDCL solvers in parallel,
and share information while solving

Introduction

@ Parallel SAT solvers (Availability of computing nodes)
@ Portfolio, Divide-and-Conquer

@ Divide-and-Conquer: Split the formula into several
sub-formulas and solve them using CDCL solvers in parallel,
and share information while solving

@ How to "Divide” so the " Conquer’s become easier?

Search Space Partitioning

@ 1 = dA X AX5AX]
@ o = P Axp Axs A Xy
° P3=9Ax2 A X3

AMPHAROS - Baseline

@ AMPHAROS as a baseline for our implementation

AMPHAROS - Baseline

@ AMPHAROS as a baseline for our implementation

@ Divide-and-Conquer parallel solver

AMPHAROS - Baseline

@ AMPHAROS as a baseline for our implementation
@ Divide-and-Conquer parallel solver

e Dynamically partitions/splits the search space

AMPHAROS - Baseline

AMPHAROS as a baseline for our implementation
Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space
Uses VSIDS to pick the next variable for splitting

AMPHAROS - Baseline

AMPHAROS as a baseline for our implementation
Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space
Uses VSIDS to pick the next variable for splitting

Adaptive load balancing of solvers over cubes

AMPHAROS - Baseline

AMPHAROS - Baseline

What's added?

@ Propagation rate-based splitting heuristic

@ Worker Diversification

Backend Solver

o Fairly modular, easy to modify
@ Included: Minisat, Glucose
o Added: MapleSAT

@ Small improvement over existing workers

Splitting Heuristic

o Propagation rate

Splitting Heuristic

o Propagation rate

o For each variable: (# of propagations / # of decisions)
o Pick the variable with the highest rate (at the conflict limit)

Splitting Heuristic

o Propagation rate

o For each variable: (# of propagations / # of decisions)
o Pick the variable with the highest rate (at the conflict limit)

@ A dynamic metric

Splitting Heuristic

o Propagation rate

o For each variable: (# of propagations / # of decisions)
o Pick the variable with the highest rate (at the conflict limit)

@ A dynamic metric

@ Computed during solving of each cube

Splitting Heuristic

o Propagation rate

o For each variable: (# of propagations / # of decisions)
o Pick the variable with the highest rate (at the conflict limit)

@ A dynamic metric
@ Computed during solving of each cube

@ Minimal computation overhead

Splitting Heuristic

Propagation rate

o For each variable: (# of propagations / # of decisions)
o Pick the variable with the highest rate (at the conflict limit)

A dynamic metric
Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting

Worker Diversification

@ Similar to the Portfolio solvers approach

10/15

Worker Diversification

@ Similar to the Portfolio solvers approach

@ Used different restart strategies for worker solver

10/15

Worker Diversification

@ Similar to the Portfolio solvers approach

@ Used different restart strategies for worker solver
@ The best configuration in our experiments:
o Luby + Geometric + MABR (Multi-Armed Bandit Restart)

10/15

Experimental Setup
@ Machines:
e 8 core Intel Xeon CPUs @ 2.53 GHz
e 16GB RAM
@ Benchmarks:
e SAT 2016 Application

@ 300 instances
@ 2-hour timeout

o Cryptographic Hash functions

o Preimage of 21, 22, 23 rounds of SHA-1
@ 48-hour timeout

11/15

SAT 2016 Application Benchmark

8000 T . T | |
7000 _
6000 _
5000 _
“
o 4000 _
£
=
3000 |
2000 |- AMPHAROS —— |
Treengeling ——
1000 CryptoMinisat —— _|
Plingeling ——
Glucose-Syrup ——
0 i
0 250 300

Mumber of instances salved 12/15

SAT 2016 Application Benchmark

8000 T T T T T
7000 -
6000 -
5000 -
“
o 4000 -
£
=
3000 B
AMPHAROS ——
2000 - Treengeling —— 7|
CryptoMiniSat ——
1000 | Plingeling —— _|
Glucose-Syrup ——
Ampharos-Maplesat ——
0 I I
0 200 250 300

Mumber of instances salved 12/15

SAT 2016 Application Benchmark

8000 T T T T T
7000 -
6000 -
5000 -
“
o 4000 -
£
=
3000 B
AMPHAROS ——
Treengeling ——
2000 - CryptoMiniSat —— 7|
Plingeling ——
1000 L Glucose-Syrup —— _|
Ampharos-Maplesat ——
MapleAmpharos-PR ——
0 I I
0 200 250 300

Mumber of instances salved 12/15

SAT 2016 Application Benchmark

8000 T . T | |
7000 _
6000 _
5000 _
“
o 4000 _
£
=
3000 |- AMPHAROS -
Treengeling ——
CryptoMiniSat ——
2000 - Plingeling —— 7]
Glucose-Syrup ——
1000 | Ampharos-Maplesat —— _|
MapleAmpharos-PR ——
MapleAmpharos ——
0 I I
0 200 250 300

Mumber of instances salved 12/15

SHA-1 preimage Benchmark

30000 | | | | |
Treengeling ——
CryptoMiniSat —— ‘
55000 Plingeling —— [|

[Glucose-Syrup ——
AMPHAROS —— t

20000

15000

Time (s)

10000

5000

50 60

Mumber of instances sohlved 13/15

SHA-1 preimage Benchmark

30000 | | | | |
Treengeling ——
CryptoMiniSat —— f
Plingeling —— ‘
25000 - Glucose-Syrup —— [7
AMPHAROS '
Ampharos-Maplesat
20000 -

15000

Time (s)

10000

5000

50 60

Mumber of instances sohlved 13/15

SHA-1 preimage Benchmark

30000

T
Treengeling ——
CryptoMiniSat ——
Plingeling ——
25000 - Glucose-Syrup —— 7
AMPHAROS
Ampharos-Maplesat

MapleAmpharos-PR

20000

15000

Time (s)

10000

5000

50 60

Mumber of instances sohlved 13/15

SHA-1 preimage Benchmark

30000 T T T T T
Treengeling ——
CryptoMiniSat —— ‘
Plingeling ——
25000 | | —

Glucose-Syrup ——
AMPHAROS
Ampharos-Maplesat
20000 | MapleAmpharos-PR
MapleAampharos

15000

Time (s)

10000

5000

50 60

Mumber of instances sohlved 13/15

Conclusion

@ An improved version of AMPHARQOS competitive to top
parallel solvers

@ Important role of Splitting heuristic

@ Dynamic vs Static metrics (Cheaper guess / Heavier, more
accurate!)

@ Still not as successful as portfolio solvers, but getting closer!

14 /15

Conclusion

An improved version of AMPHAROS competitive to top
parallel solvers

Important role of Splitting heuristic

Dynamic vs Static metrics (Cheaper guess / Heavier, more
accurate!)

Still not as successful as portfolio solvers, but getting closer!

More adaptive diversification and splitting

14 /15

Thank you

Questions?

15/15

