
A Propagation Rate based Splitting Heuristic for
Divide-and-Conquer Solvers

Saeed Nejati, Zack Newsham, Joseph Scott, Jimmy Liang,
Catherine Gebotys, Pascal Poupart and Vijay Ganesh

University of Waterloo

September 1st
SAT 2017



Introduction

Parallel SAT solvers (Availability of computing nodes)

Portfolio, Divide-and-Conquer

Divide-and-Conquer: Split the formula into several
sub-formulas and solve them using CDCL solvers in parallel,
and share information while solving

How to ”Divide” so the ”Conquer”s become easier?

2 / 15



Introduction

Parallel SAT solvers (Availability of computing nodes)

Portfolio, Divide-and-Conquer

Divide-and-Conquer: Split the formula into several
sub-formulas and solve them using CDCL solvers in parallel,
and share information while solving

How to ”Divide” so the ”Conquer”s become easier?

2 / 15



Search Space Partitioning

φ1 = φ∧¬x2∧x5∧¬x1
φ2 = φ∧¬x2∧ x5∧ x1

φ3 = φ ∧ x2 ∧ x3

x2

x5

⊥ x1

φ1 φ2

x3

⊥ φ3

F

F T

F T

T

F T

3 / 15



AMPHAROS - Baseline

AMPHAROS as a baseline for our implementation

Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space

Uses VSIDS to pick the next variable for splitting

Adaptive load balancing of solvers over cubes

4 / 15



AMPHAROS - Baseline

AMPHAROS as a baseline for our implementation

Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space

Uses VSIDS to pick the next variable for splitting

Adaptive load balancing of solvers over cubes

4 / 15



AMPHAROS - Baseline

AMPHAROS as a baseline for our implementation

Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space

Uses VSIDS to pick the next variable for splitting

Adaptive load balancing of solvers over cubes

4 / 15



AMPHAROS - Baseline

AMPHAROS as a baseline for our implementation

Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space

Uses VSIDS to pick the next variable for splitting

Adaptive load balancing of solvers over cubes

4 / 15



AMPHAROS - Baseline

AMPHAROS as a baseline for our implementation

Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space

Uses VSIDS to pick the next variable for splitting

Adaptive load balancing of solvers over cubes

4 / 15



AMPHAROS - Baseline

x2

x5

⊥ x1

φ1

S1

φ2

S2

x3

⊥ φ3

S3

F

F T

F T

T

F T

5 / 15



AMPHAROS - Baseline

x2

x5

⊥ x1

x7

φ4

S1

φ5

S2

φ2

x3

⊥ φ3

S3

F

F T

F

F T

T

T

F T

6 / 15



What’s added?

Propagation rate-based splitting heuristic

Worker Diversification

7 / 15



Backend Solver

Fairly modular, easy to modify

Included: Minisat, Glucose

Added: MapleSAT

Small improvement over existing workers

8 / 15



Splitting Heuristic

Propagation rate

For each variable: (# of propagations / # of decisions)
Pick the variable with the highest rate (at the conflict limit)

A dynamic metric

Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting

9 / 15



Splitting Heuristic

Propagation rate

For each variable: (# of propagations / # of decisions)
Pick the variable with the highest rate (at the conflict limit)

A dynamic metric

Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting

9 / 15



Splitting Heuristic

Propagation rate

For each variable: (# of propagations / # of decisions)
Pick the variable with the highest rate (at the conflict limit)

A dynamic metric

Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting

9 / 15



Splitting Heuristic

Propagation rate

For each variable: (# of propagations / # of decisions)
Pick the variable with the highest rate (at the conflict limit)

A dynamic metric

Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting

9 / 15



Splitting Heuristic

Propagation rate

For each variable: (# of propagations / # of decisions)
Pick the variable with the highest rate (at the conflict limit)

A dynamic metric

Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting

9 / 15



Splitting Heuristic

Propagation rate

For each variable: (# of propagations / # of decisions)
Pick the variable with the highest rate (at the conflict limit)

A dynamic metric

Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting

9 / 15



Worker Diversification

Similar to the Portfolio solvers approach

Used different restart strategies for worker solver

The best configuration in our experiments:

Luby + Geometric + MABR (Multi-Armed Bandit Restart)

10 / 15



Worker Diversification

Similar to the Portfolio solvers approach

Used different restart strategies for worker solver

The best configuration in our experiments:

Luby + Geometric + MABR (Multi-Armed Bandit Restart)

10 / 15



Worker Diversification

Similar to the Portfolio solvers approach

Used different restart strategies for worker solver

The best configuration in our experiments:

Luby + Geometric + MABR (Multi-Armed Bandit Restart)

10 / 15



Results

Experimental Setup

Machines:

8 core Intel Xeon CPUs @ 2.53 GHz
16GB RAM

Benchmarks:
SAT 2016 Application

300 instances
2-hour timeout

Cryptographic Hash functions

Preimage of 21, 22, 23 rounds of SHA-1
48-hour timeout

11 / 15



Resutls

SAT 2016 Application Benchmark

12 / 15



Resutls

SAT 2016 Application Benchmark

12 / 15



Resutls

SAT 2016 Application Benchmark

12 / 15



Resutls

SAT 2016 Application Benchmark

12 / 15



Resutls

SHA-1 preimage Benchmark

13 / 15



Resutls

SHA-1 preimage Benchmark

13 / 15



Resutls

SHA-1 preimage Benchmark

13 / 15



Resutls

SHA-1 preimage Benchmark

13 / 15



Conclusion

An improved version of AMPHAROS competitive to top
parallel solvers

Important role of Splitting heuristic

Dynamic vs Static metrics (Cheaper guess / Heavier, more
accurate!)

Still not as successful as portfolio solvers, but getting closer!

More adaptive diversification and splitting

14 / 15



Conclusion

An improved version of AMPHAROS competitive to top
parallel solvers

Important role of Splitting heuristic

Dynamic vs Static metrics (Cheaper guess / Heavier, more
accurate!)

Still not as successful as portfolio solvers, but getting closer!

More adaptive diversification and splitting

14 / 15



Thank you
Questions?

15 / 15


