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Introduction

@ Parallel SAT solvers (Availability of computing nodes)
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@ How to "Divide” so the " Conquer’s become easier?



Search Space Partitioning

@ 1 = dA X AX5AX]
@ o = P Axp Axs A Xy
° P3=9Ax2 A X3
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AMPHAROS as a baseline for our implementation
Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space
Uses VSIDS to pick the next variable for splitting

Adaptive load balancing of solvers over cubes
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What's added?

@ Propagation rate-based splitting heuristic

@ Worker Diversification



Backend Solver

o Fairly modular, easy to modify
@ Included: Minisat, Glucose
o Added: MapleSAT

@ Small improvement over existing workers
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Splitting Heuristic

Propagation rate

o For each variable: (# of propagations / # of decisions)
o Pick the variable with the highest rate (at the conflict limit)

A dynamic metric
Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting
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Worker Diversification

@ Similar to the Portfolio solvers approach

@ Used different restart strategies for worker solver
@ The best configuration in our experiments:
o Luby + Geometric + MABR (Multi-Armed Bandit Restart)
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Experimental Setup
@ Machines:
e 8 core Intel Xeon CPUs @ 2.53 GHz
e 16GB RAM
@ Benchmarks:
e SAT 2016 Application

@ 300 instances
@ 2-hour timeout

o Cryptographic Hash functions

o Preimage of 21, 22, 23 rounds of SHA-1
@ 48-hour timeout
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SAT 2016 Application Benchmark
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SHA-1 preimage Benchmark

30000 | | | | |
Treengeling ——
CryptoMiniSat —— ‘
55000 Plingeling —— [ |

[ Glucose-Syrup ——
AMPHAROS —— t

20000

15000

Time (s)

10000

5000

50 60

Mumber of instances sohlved 13/15



SHA-1 preimage Benchmark

30000 | | | | |
Treengeling ——
CryptoMiniSat —— f
Plingeling —— ‘
25000 - Glucose-Syrup —— [ 7
AMPHAROS '
Ampharos-Maplesat
20000 -

15000

Time (s)

10000

5000

50 60

Mumber of instances sohlved 13/15



SHA-1 preimage Benchmark

30000

T
Treengeling ——
CryptoMiniSat ——
Plingeling ——
25000 - Glucose-Syrup —— 7
AMPHAROS
Ampharos-Maplesat

MapleAmpharos-PR

20000

15000

Time (s)

10000

5000

50 60

Mumber of instances sohlved 13/15



SHA-1 preimage Benchmark

30000 T T T T T
Treengeling ——
CryptoMiniSat —— ‘
Plingeling ——
25000 | | —

Glucose-Syrup ——
AMPHAROS
Ampharos-Maplesat
20000 | MapleAmpharos-PR
MapleAampharos

15000

Time (s)

10000

5000

50 60

Mumber of instances sohlved 13/15



Conclusion

@ An improved version of AMPHARQOS competitive to top
parallel solvers

@ Important role of Splitting heuristic

@ Dynamic vs Static metrics (Cheaper guess / Heavier, more
accurate!)

@ Still not as successful as portfolio solvers, but getting closer!
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Conclusion

An improved version of AMPHAROS competitive to top
parallel solvers

Important role of Splitting heuristic

Dynamic vs Static metrics (Cheaper guess / Heavier, more
accurate!)

Still not as successful as portfolio solvers, but getting closer!

More adaptive diversification and splitting
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Thank you

Questions?
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