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Introduction

Parallel SAT solvers (Availability of computing nodes)

Portfolio, Divide-and-Conquer

Divide-and-Conquer: Split the formula into several
sub-formulas and solve them using CDCL solvers in parallel,
and share information while solving

How to ”Divide” so the ”Conquer”s become easier?
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Search Space Partitioning

φ1 = φ∧¬x2∧x5∧¬x1
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AMPHAROS - Baseline

AMPHAROS as a baseline for our implementation

Divide-and-Conquer parallel solver

Dynamically partitions/splits the search space

Uses VSIDS to pick the next variable for splitting

Adaptive load balancing of solvers over cubes
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AMPHAROS - Baseline
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AMPHAROS - Baseline
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What’s added?

Propagation rate-based splitting heuristic

Worker Diversification
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Backend Solver

Fairly modular, easy to modify

Included: Minisat, Glucose

Added: MapleSAT

Small improvement over existing workers
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Splitting Heuristic

Propagation rate

For each variable: (# of propagations / # of decisions)
Pick the variable with the highest rate (at the conflict limit)

A dynamic metric

Computed during solving of each cube

Minimal computation overhead

Smaller sub-formulas are expected after splitting
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Worker Diversification

Similar to the Portfolio solvers approach

Used different restart strategies for worker solver

The best configuration in our experiments:

Luby + Geometric + MABR (Multi-Armed Bandit Restart)
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Results

Experimental Setup

Machines:

8 core Intel Xeon CPUs @ 2.53 GHz
16GB RAM

Benchmarks:
SAT 2016 Application

300 instances
2-hour timeout

Cryptographic Hash functions

Preimage of 21, 22, 23 rounds of SHA-1
48-hour timeout
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Resutls

SAT 2016 Application Benchmark
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Resutls

SHA-1 preimage Benchmark
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Conclusion

An improved version of AMPHAROS competitive to top
parallel solvers

Important role of Splitting heuristic

Dynamic vs Static metrics (Cheaper guess / Heavier, more
accurate!)

Still not as successful as portfolio solvers, but getting closer!

More adaptive diversification and splitting
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Thank you
Questions?
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