CDCL(Crypto) SAT Solvers for Cryptanalysis

Saeed Nejati and Vijay Ganesh November 4th CASCON 2019

University of Waterloo

• SAT Solvers: Powerful general purpose search tools

- SAT Solvers: Powerful general purpose search tools
- **Cryptanalysis**: Searching a huge search space for a secret key/value

• SAT/SMT solvers have increasingly been used in Cryptographic tasks

- SAT/SMT solvers have increasingly been used in Cryptographic tasks
 - Finding cryptographic keys [Mas99, MM00]
 - Modular root finding [FMM03]
 - A collision attack [MZ06]
 - Preimage attacks [MS13], [Nos12]
 - Differential cryptanalysis [Pro16]
 - RX-differentials [Ashur2017], [DW17]
 - Verification of cryptographic primitives [Tom15]

- SAT/SMT solvers have increasingly been used in Cryptographic tasks
 - Finding cryptographic keys [Mas99, MM00]
 - Modular root finding [FMM03]
 - A collision attack [MZ06]
 - Preimage attacks [MS13], [Nos12]
 - Differential cryptanalysis [Pro16]
 - RX-differentials [Ashur2017], [DW17]
 - Verification of cryptographic primitives [Tom15]
- Mostly used as a black-box solver for a reduced equation system

- SAT/SMT solvers have increasingly been used in Cryptographic tasks
 - Finding cryptographic keys [Mas99, MM00]
 - Modular root finding [FMM03]
 - A collision attack [MZ06]
 - Preimage attacks [MS13], [Nos12]
 - Differential cryptanalysis [Pro16]
 - RX-differentials [Ashur2017], [DW17]
 - Verification of cryptographic primitives [Tom15]
- Mostly used as a black-box solver for a reduced equation system

Question

Can we tailor internals of a SAT solver for a specific cryptographic problem to improve the solving time?

Outline

Boolean SAT Solvers

CDCL SAT Solvers

The CDCL(Crypto) Framework

Programmatic SAT Architecture

Case Studies

Algebraic Fault Attack

Differential Cryptanalysis

Boolean SAT Solvers

• NP-complete problem

- NP-complete problem
- Given a Boolean formula, determine if it is satisfiable.

- NP-complete problem
- Given a Boolean formula, determine if it is satisfiable.
- Boolean formula: an expression involving Boolean variables and logical connectives ¬, ∧, ∨.

- NP-complete problem
- Given a Boolean formula, determine if it is satisfiable.
- Boolean formula: an expression involving Boolean variables and logical connectives ¬, ∧, ∨.
- A formula is satisfiable, if there exists an assignment to the variables which the formula true.

- NP-complete problem
- Given a Boolean formula, determine if it is satisfiable.
- Boolean formula: an expression involving Boolean variables and logical connectives ¬, ∧, ∨.
- A formula is satisfiable, if there exists an assignment to the variables which the formula true.
- Example: $(x \lor y \lor \neg z) \land (\neg x \lor \neg y) \land z$

Unit propagation

Decision/Branching heuristics

• Pick an unassigned variable and set it to False/True

Conflict analysis

- Find the root cause of conflict
- Encode it as a clause and add it back to the formula

The CDCL(Crypto) Framework

- When encoding a constraint into SAT, some higher level properties might be lost
- Example: consider a pseudo-Boolean constraint $C: x + y \leq 0$
 - We trivially know: $C \to \neg x$ and $C \to \neg y$.

- When encoding a constraint into SAT, some higher level properties might be lost
- Example: consider a pseudo-Boolean constraint $C: x + y \leq 0$
 - We trivially know: $C \to \neg x$ and $C \to \neg y$.
 - We can encode it using a half-adder

- When encoding a constraint into SAT, some higher level properties might be lost
- Example: consider a pseudo-Boolean constraint $C: x + y \leq 0$
 - We trivially know: $C \to \neg x$ and $C \to \neg y$.
 - We can encode it using a half-adder
 - $sum \leftrightarrow x \oplus y$, $carry \leftrightarrow x \wedge y$, and adding constraints sum = 0, carry = 0.

- When encoding a constraint into SAT, some higher level properties might be lost
- Example: consider a pseudo-Boolean constraint $C: x + y \leq 0$
 - We trivially know: $C \to \neg x$ and $C \to \neg y$.
 - We can encode it using a half-adder
 - $sum \leftrightarrow x \oplus y$, $carry \leftrightarrow x \wedge y$, and adding constraints sum = 0, carry = 0.
 - Resultant CNF: $(\neg x \lor \neg y) \land (\neg x \lor y) \land (x \lor y)$

- When encoding a constraint into SAT, some higher level properties might be lost
- Example: consider a pseudo-Boolean constraint $C: x + y \leq 0$
 - We trivially know: $C \to \neg x$ and $C \to \neg y$.
 - We can encode it using a half-adder
 - $sum \leftrightarrow x \oplus y$, $carry \leftrightarrow x \wedge y$, and adding constraints sum = 0, carry = 0.
 - Resultant CNF: $(\neg x \lor \neg y) \land (\neg x \lor y) \land (x \lor y)$
 - No unit clause to propagate!

- When encoding a constraint into SAT, some higher level properties might be lost
- Example: consider a pseudo-Boolean constraint $C: x + y \leq 0$
 - We trivially know: $C \to \neg x$ and $C \to \neg y$.
 - We can encode it using a half-adder
 - $sum \leftrightarrow x \oplus y$, $carry \leftrightarrow x \wedge y$, and adding constraints sum = 0, carry = 0.
 - Resultant CNF: $(\neg x \lor \neg y) \land (\neg x \lor y) \land (x \lor y)$
 - No unit clause to propagate!
- "Better" encoding vs. "Better" Propagation

• Instrumenting a SAT solver with *callbacks*

- Instrumenting a SAT solver with *callbacks*
- Extending functionality of propagation and conflict analysis

- Instrumenting a SAT solver with *callbacks*
- Extending functionality of propagation and conflict analysis
- Programmatic callbacks analyze the partial assignment

- Instrumenting a SAT solver with *callbacks*
- Extending functionality of propagation and conflict analysis
- Programmatic callbacks analyze the partial assignment
- Propagation callback
 - Called after unit propagation
 - Checks for implied literals that are missed by unit propagation

- Instrumenting a SAT solver with *callbacks*
- Extending functionality of propagation and conflict analysis
- Programmatic callbacks analyze the partial assignment
- Propagation callback
 - Called after unit propagation
 - Checks for implied literals that are missed by unit propagation
- Conflict analysis callback
 - Called after *propagation* is done
 - Checks if partial assignment cannot be extended to a full solution

Case Studies

Hardware Fault Injection

• SHA-1 hash function

Hardware Fault Injection

- SHA-1 hash function
- Induce a fault in a target register

Hardware Fault Injection

- SHA-1 hash function
- Induce a fault in a target register
- Using heat, EM, laser, ...

Algebraic Fault Analysis

- $H = f_{0..79}(IV, W_{0..79})$
- This equation system will be encoded into CNF.
- Fault model: Constraints on δ_i .

 $H'_{i} = f_{64..79}(f_{0..63}(IV, W_{0..63}) \oplus \delta_{i}, W_{64..79})$

Algebraic Fault Analysis

- Abstract away the common parts
- Verification of the solution will be needed

Algebraic Fault Analysis - Programmatic Approach

- Base SAT solver: MapleSAT
- Programmatic conflict analyzer
 - Embedding the verification loop
 - As soon as message word variables are set, they are ready to be verified
 - Early embedded check vs. Straightforward check after solving completely
- Programmatic propagator
 - Improving the propagation flow of multi-operand additions
 - Generating *reason clauses* in each column addition when output bits are missed

Algebraic Fault Analysis - Results

- Recovering SHA-256 message bits
- 14.3x speed-up on average
- 17 fewer faults were needed compared to the previous works

• Analyzing how a difference at the input propagates to a difference at the output.

•
$$\Delta x = x \oplus x' \to \Delta y = y \oplus y'$$

- Analyzing how a difference at the input propagates to a difference at the output.
- $\Delta x = x \oplus x' \to \Delta y = y \oplus y'$
- Gathering statistical information about the differences (finding bias/non-randomness).

- Analyzing how a difference at the input propagates to a difference at the output.
- $\Delta x = x \oplus x' \to \Delta y = y \oplus y'$
- Gathering statistical information about the differences (finding bias/non-randomness).
- Differential Path: A trace of differentials over smaller steps in the function

- Analyzing how a difference at the input propagates to a difference at the output.
- $\Delta x = x \oplus x' \to \Delta y = y \oplus y'$
- Gathering statistical information about the differences (finding bias/non-randomness).
- Differential Path: A trace of differentials over smaller steps in the function
- Collision: a differential path with final difference equal to zero.

- Guess-and-determine solvers:
 - Very similar search approach to SAT solvers
 - Dedicated propagators for differential propagation rules
 - Dedicated branching heuristics
 - State-of-the-art results on SHA-256 collision (31 steps)

- Guess-and-determine solvers:
 - Very similar search approach to SAT solvers
 - Dedicated propagators for differential propagation rules
 - Dedicated branching heuristics
 - State-of-the-art results on SHA-256 collision (31 steps)
- SAT-based approaches:
 - Encoding bitwise differential behaviour only
 - Prioritizing difference variables
 - Limited representation power hence limited propagation power
 - State-of-the-art: 24 steps

- Guess-and-determine solvers:
 - Very similar search approach to SAT solvers
 - Dedicated propagators for differential propagation rules
 - Dedicated branching heuristics
 - State-of-the-art results on SHA-256 collision (31 steps)
- SAT-based approaches:
 - Encoding bitwise differential behaviour only
 - Prioritizing difference variables
 - Limited representation power hence limited propagation power
 - State-of-the-art: 24 steps

• Example rule: r = IF(x, y, z), - \leftarrow ---, x \leftarrow -xx.

- Guess-and-determine solvers:
 - Very similar search approach to SAT solvers
 - Dedicated propagators for differential propagation rules
 - Dedicated branching heuristics
 - State-of-the-art results on SHA-256 collision (31 steps)
- SAT-based approaches:
 - Encoding bitwise differential behaviour only
 - Prioritizing difference variables
 - Limited representation power hence limited propagation power
 - State-of-the-art: 24 steps
- Example rule: r = IF(x, y, z), \leftarrow ---, x \leftarrow -xx.
- Full representation yields a blow up in size of the encoding
- An opportunity for Programmatic propagation

Differential Cryptanalysis - Results

- Collision on round-reduced SHA-256
- Modified the starting differential path of [Pro16]
- Base solver: MapleSAT
- Programmatic Propagator: Implemented a subset of differential propagation rules
- Programmatic conflict analyzer: Detects impossible differentials
- Found collision for 25 rounds of SHA-256 using MapleSAT(Crypto) in ~3.5 hours

Conclusions

- A framework on top of CDCL SAT solvers to implement cryptographic reasonings.
- Showcased the power of the framework in two cryptanalysis tasks.
- A bridge between two ends of a spectrum:
 - Performance of dedicated cryptanalysis tools
 - Flexibility and search power of SAT solvers
- Beating state-of-the-art in some cases but still a long way to match state-of-the-art in other cases

Thanks! Questions?

References i

Glenn De Witte.

Automatic sat-solver based search tools for cryptanalysis.

2017.

 Claudia Fiorini, Enrico Martinelli, and Fabio Massacci.
 How to Fake an RSA Signature by Encoding Modular Root Finding as a SAT Problem.
 Discrete Applied Mathematics, 130(2):101–127, 2003.

📔 Fabio Massacci.

Using Walk-SAT and Rel-SAT for Cryptographic Key Search.

In IJCAI, volume 1999, pages 290-295, 1999.

References ii

Fabio Massacci and Laura Marraro.
 Logical Cryptanalysis as a SAT Problem.
 Journal of Automated Reasoning, 24(1-2):165–203, 2000.

Paweł Morawiecki and Marian Srebrny.
A SAT-based Preimage Analysis of Reduced KECCAK Hash Functions.

Information Processing Letters, 113(10):392–397, 2013.

Applications of SAT Solvers to Cryptanalysis of Hash Functions.

Theory and Applications of Satisfiability Testing-SAT 2006, pages 102–115, 2006.

References iii

Vegard Nossum.

SAT-based Preimage Attacks on SHA-1.

- 2012.
- Lukas Prokop.

Differential cryptanalysis with SAT solvers. PhD thesis, University of Technology, Graz, 2016.

Applying Satisfiability to the Analysis of Cryptography. https://github.com/GaloisInc/sat2015-crypto/blob/ master/slides/talk.pdf, 2015. • Satisfiability for higher level logical formulas

- Satisfiability for higher level logical formulas
- Abstract the given formula into a propositional one

- Satisfiability for higher level logical formulas
- Abstract the given formula into a propositional one
- $\underbrace{x^2 < 0}_A \lor \underbrace{x^2 > 1}_B$ becomes $A \lor B$.

- Satisfiability for higher level logical formulas
- Abstract the given formula into a propositional one
- $\underbrace{x^2 < 0}_A \lor \underbrace{x^2 > 1}_B$ becomes $A \lor B$.
- Solve it using a SAT solver (e.g. set A to true).

- Satisfiability for higher level logical formulas
- Abstract the given formula into a propositional one
- $\underbrace{x^2 < 0}_A \lor \underbrace{x^2 > 1}_B$ becomes $A \lor B$.
- Solve it using a SAT solver (e.g. set A to true).
- A *theory solver* checks if the assignment is a solution to the original formula (and if not, why not).

- Satisfiability for higher level logical formulas
- Abstract the given formula into a propositional one
- $\underbrace{x^2 < 0}_A \lor \underbrace{x^2 > 1}_B$ becomes $A \lor B$.
- Solve it using a SAT solver (e.g. set A to true).
- A *theory solver* checks if the assignment is a solution to the original formula (and if not, why not).
- Here the *T*-solver can return the clause $\neg A$ (i.e. $x^2 \ge 0$).