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Motivation

• SAT Solvers: Powerful general purpose search tools

• Cryptanalysis: Searching a huge search space for a secret

key/value
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Motivation

• SAT/SMT solvers have increasingly been used in
Cryptographic tasks

• Finding cryptographic keys [Mas99, MM00]

• Modular root finding [FMM03]

• A collision attack [MZ06]

• Preimage attacks [MS13], [Nos12]

• Differential cryptanalysis [Pro16]

• RX-differentials [Ashur2017], [DW17]

• Verification of cryptographic primitives [Tom15]

• Mostly used as a black-box solver for a reduced equation

system

Question

Can we tailor internals of a SAT solver for a specific

cryptographic problem to improve the solving time?

3



Motivation

• SAT/SMT solvers have increasingly been used in
Cryptographic tasks
• Finding cryptographic keys [Mas99, MM00]

• Modular root finding [FMM03]

• A collision attack [MZ06]

• Preimage attacks [MS13], [Nos12]

• Differential cryptanalysis [Pro16]

• RX-differentials [Ashur2017], [DW17]

• Verification of cryptographic primitives [Tom15]

• Mostly used as a black-box solver for a reduced equation

system

Question

Can we tailor internals of a SAT solver for a specific

cryptographic problem to improve the solving time?

3



Motivation

• SAT/SMT solvers have increasingly been used in
Cryptographic tasks
• Finding cryptographic keys [Mas99, MM00]

• Modular root finding [FMM03]

• A collision attack [MZ06]

• Preimage attacks [MS13], [Nos12]

• Differential cryptanalysis [Pro16]

• RX-differentials [Ashur2017], [DW17]

• Verification of cryptographic primitives [Tom15]

• Mostly used as a black-box solver for a reduced equation

system

Question

Can we tailor internals of a SAT solver for a specific

cryptographic problem to improve the solving time?

3



Motivation

• SAT/SMT solvers have increasingly been used in
Cryptographic tasks
• Finding cryptographic keys [Mas99, MM00]

• Modular root finding [FMM03]

• A collision attack [MZ06]

• Preimage attacks [MS13], [Nos12]

• Differential cryptanalysis [Pro16]

• RX-differentials [Ashur2017], [DW17]

• Verification of cryptographic primitives [Tom15]

• Mostly used as a black-box solver for a reduced equation

system

Question

Can we tailor internals of a SAT solver for a specific

cryptographic problem to improve the solving time?

3



Outline

Boolean SAT Solvers

CDCL SAT Solvers

The CDCL(Crypto) Framework

Programmatic SAT Architecture

Case Studies

Algebraic Fault Attack

Differential Cryptanalysis

4



Boolean SAT Solvers



Boolean SATisfiability

• NP-complete problem

• Given a Boolean formula, determine if it is satisfiable.

• Boolean formula: an expression involving Boolean variables

and logical connectives ¬,∧,∨.

• A formula is satisfiable, if there exists an assignment to the

variables which the formula true.

• Example: (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ z
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CDCL SAT Solver

Unit propagation

• (x ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬z)
• (x) ∧ (¬x ∨ ¬y)

• (y)

• ¬z, ¬z → x, x→ ¬y

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

Yes

No

No

Yes

No

Yes

Conflict-Driven Clause-Learning 6
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CDCL SAT Solver

Decision/Branching heuristics

• Pick an unassigned variable

and set it to False/True

Input Formula
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Conflict?
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CDCL SAT Solver

Conflict analysis

• Find the root cause of

conflict

• Encode it as a clause and

add it back to the formula

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump
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All Variables
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The CDCL(Crypto) Framework



Lost in Translation

• When encoding a constraint into SAT, some higher level

properties might be lost

• Example: consider a pseudo-Boolean constraint C : x+ y ≤ 0

• We trivially know: C → ¬x and C → ¬y.

• We can encode it using a half-adder

• sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

• Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

• No unit clause to propagate!

• “Better” encoding vs. “Better” Propagation
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Programmatic SAT

• Instrumenting a SAT solver with callbacks

• Extending functionality of propagation and conflict analysis

• Programmatic callbacks analyze the partial assignment

• Propagation callback

• Called after unit propagation

• Checks for implied literals that are missed by unit propagation

• Conflict analysis callback

• Called after propagation is done

• Checks if partial assignment cannot be extended to a full

solution
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Programmatic SAT

Input Formula

Unit Propagation

Conflict?

Conflict Analysis
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New Reason
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Case Studies



Hardware Fault Injection

• SHA-1 hash function

• Induce a fault in a target

register

• Using heat, EM, laser, ...
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Algebraic Fault Analysis

• H = f0..79(IV,W0..79)

• This equation system will be

encoded into CNF.

• Fault model: Constraints on

δi.

H ′
i = f64..79(f0..63(IV,W0..63)⊕δi,W64..79)
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Algebraic Fault Analysis

• Abstract away the common

parts

• Verification of the solution

will be needed
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Algebraic Fault Analysis - Programmatic Approach

• Base SAT solver: MapleSAT

• Programmatic conflict analyzer

• Embedding the verification loop

• As soon as message word variables are set, they are ready to

be verified

• Early embedded check vs. Straightforward check after solving

completely

• Programmatic propagator

• Improving the propagation flow of multi-operand additions

• Generating reason clauses in each column addition when

output bits are missed
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Algebraic Fault Analysis - Results

• Recovering

SHA-256

message bits

• 14.3x speed-up

on average

• 17 fewer faults

were needed

compared to the

previous works
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Differential Cryptanalysis

• Analyzing how a difference at the input propagates to a

difference at the output.

• ∆x = x⊕ x′ → ∆y = y ⊕ y′

• Gathering statistical information about the differences (finding

bias/non-randomness).

• Differential Path: A trace of differentials over smaller steps in

the function

• Collision: a differential path with final difference equal to zero.
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Differential Cryptanalysis - Collision on SHA-256

• Guess-and-determine solvers:

• Very similar search approach to SAT solvers

• Dedicated propagators for differential propagation rules

• Dedicated branching heuristics

• State-of-the-art results on SHA-256 collision (31 steps)

• SAT-based approaches:

• Encoding bitwise differential behaviour only

• Prioritizing difference variables

• Limited representation power hence limited propagation power

• State-of-the-art: 24 steps

• Example rule: r = IF (x, y, z), - ← ---, x ← -xx.

• Full representation yields a blow up in size of the encoding

• An opportunity for Programmatic propagation
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Differential Cryptanalysis - Results

• Collision on round-reduced SHA-256

• Modified the starting differential path of [Pro16]

• Base solver: MapleSAT

• Programmatic Propagator: Implemented a subset of

differential propagation rules

• Programmatic conflict analyzer: Detects impossible

differentials

• Found collision for 25 rounds of SHA-256 using

MapleSAT(Crypto) in ∼3.5 hours
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Conclusions

• A framework on top of CDCL SAT solvers to implement

cryptographic reasonings.

• Showcased the power of the framework in two cryptanalysis

tasks.

• A bridge between two ends of a spectrum:

• Performance of dedicated cryptanalysis tools

• Flexibility and search power of SAT solvers

• Beating state-of-the-art in some cases but still a long way to

match state-of-the-art in other cases

20



Thanks!

Questions?
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CDCL(T): SAT-Modulo-Theories

• Satisfiability for higher level logical formulas

• Abstract the given formula into a propositional one

• x2 < 0︸ ︷︷ ︸
A

∨x2 > 1︸ ︷︷ ︸
B

becomes A ∨B.

• Solve it using a SAT solver (e.g. set A to true).

• A theory solver checks if the assignment is a solution to the

original formula (and if not, why not).

• Here the T -solver can return the clause ¬A (i.e. x2 ≥ 0).
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