
CDCL(Crypto) SAT Solvers for Cryptanalysis

Saeed Nejati and Vijay Ganesh

November 4th

CASCON 2019

University of Waterloo

1



Motivation

• SAT Solvers: Powerful general purpose search tools

• Cryptanalysis: Searching a huge search space for a secret

key/value

SAT/SMT Solvers

Automated TestingProgram Analysis
Software/Hardware

Verification

Symbolic Execution Combinatorics

2



Motivation

• SAT Solvers: Powerful general purpose search tools

• Cryptanalysis: Searching a huge search space for a secret

key/value

SAT/SMT Solvers

Automated TestingProgram Analysis
Software/Hardware

Verification

Symbolic Execution Combinatorics

2



Motivation

• SAT/SMT solvers have increasingly been used in
Cryptographic tasks

• Finding cryptographic keys [Mas99, MM00]

• Modular root finding [FMM03]

• A collision attack [MZ06]

• Preimage attacks [MS13], [Nos12]

• Differential cryptanalysis [Pro16]

• RX-differentials [Ashur2017], [DW17]

• Verification of cryptographic primitives [Tom15]

• Mostly used as a black-box solver for a reduced equation

system

Question

Can we tailor internals of a SAT solver for a specific

cryptographic problem to improve the solving time?

3



Motivation

• SAT/SMT solvers have increasingly been used in
Cryptographic tasks
• Finding cryptographic keys [Mas99, MM00]

• Modular root finding [FMM03]

• A collision attack [MZ06]

• Preimage attacks [MS13], [Nos12]

• Differential cryptanalysis [Pro16]

• RX-differentials [Ashur2017], [DW17]

• Verification of cryptographic primitives [Tom15]

• Mostly used as a black-box solver for a reduced equation

system

Question

Can we tailor internals of a SAT solver for a specific

cryptographic problem to improve the solving time?

3



Motivation

• SAT/SMT solvers have increasingly been used in
Cryptographic tasks
• Finding cryptographic keys [Mas99, MM00]

• Modular root finding [FMM03]

• A collision attack [MZ06]

• Preimage attacks [MS13], [Nos12]

• Differential cryptanalysis [Pro16]

• RX-differentials [Ashur2017], [DW17]

• Verification of cryptographic primitives [Tom15]

• Mostly used as a black-box solver for a reduced equation

system

Question

Can we tailor internals of a SAT solver for a specific

cryptographic problem to improve the solving time?

3



Motivation

• SAT/SMT solvers have increasingly been used in
Cryptographic tasks
• Finding cryptographic keys [Mas99, MM00]

• Modular root finding [FMM03]

• A collision attack [MZ06]

• Preimage attacks [MS13], [Nos12]

• Differential cryptanalysis [Pro16]

• RX-differentials [Ashur2017], [DW17]

• Verification of cryptographic primitives [Tom15]

• Mostly used as a black-box solver for a reduced equation

system

Question

Can we tailor internals of a SAT solver for a specific

cryptographic problem to improve the solving time?

3



Outline

Boolean SAT Solvers

CDCL SAT Solvers

The CDCL(Crypto) Framework

Programmatic SAT Architecture

Case Studies

Algebraic Fault Attack

Differential Cryptanalysis

4



Boolean SAT Solvers



Boolean SATisfiability

• NP-complete problem

• Given a Boolean formula, determine if it is satisfiable.

• Boolean formula: an expression involving Boolean variables

and logical connectives ¬,∧,∨.

• A formula is satisfiable, if there exists an assignment to the

variables which the formula true.

• Example: (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ z

5



Boolean SATisfiability

• NP-complete problem

• Given a Boolean formula, determine if it is satisfiable.

• Boolean formula: an expression involving Boolean variables

and logical connectives ¬,∧,∨.

• A formula is satisfiable, if there exists an assignment to the

variables which the formula true.

• Example: (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ z

5



Boolean SATisfiability

• NP-complete problem

• Given a Boolean formula, determine if it is satisfiable.

• Boolean formula: an expression involving Boolean variables

and logical connectives ¬,∧,∨.

• A formula is satisfiable, if there exists an assignment to the

variables which the formula true.

• Example: (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ z

5



Boolean SATisfiability

• NP-complete problem

• Given a Boolean formula, determine if it is satisfiable.

• Boolean formula: an expression involving Boolean variables

and logical connectives ¬,∧,∨.

• A formula is satisfiable, if there exists an assignment to the

variables which the formula true.

• Example: (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ z

5



Boolean SATisfiability

• NP-complete problem

• Given a Boolean formula, determine if it is satisfiable.

• Boolean formula: an expression involving Boolean variables

and logical connectives ¬,∧,∨.

• A formula is satisfiable, if there exists an assignment to the

variables which the formula true.

• Example: (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ z

5



CDCL SAT Solver

Unit propagation

• (x ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬z)
• (x) ∧ (¬x ∨ ¬y)

• (y)

• ¬z, ¬z → x, x→ ¬y

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

Yes

No

No

Yes

No

Yes

Conflict-Driven Clause-Learning 6



CDCL SAT Solver

Unit propagation

• (x ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬z)

• (x) ∧ (¬x ∨ ¬y)

• (y)

• ¬z, ¬z → x, x→ ¬y

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

Yes

No

No

Yes

No

Yes

Conflict-Driven Clause-Learning 6



CDCL SAT Solver

Unit propagation

• (x ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬z)
• (x) ∧ (¬x ∨ ¬y)

• (y)

• ¬z, ¬z → x, x→ ¬y

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

Yes

No

No

Yes

No

Yes

Conflict-Driven Clause-Learning 6



CDCL SAT Solver

Unit propagation

• (x ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬z)
• (x) ∧ (¬x ∨ ¬y)

• (y)

• ¬z, ¬z → x, x→ ¬y

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

Yes

No

No

Yes

No

Yes

Conflict-Driven Clause-Learning 6



CDCL SAT Solver

Unit propagation

• (x ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬z)
• (x) ∧ (¬x ∨ ¬y)

• (y)

• ¬z, ¬z → x, x→ ¬y

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

Yes

No

No

Yes

No

Yes

Conflict-Driven Clause-Learning 6



CDCL SAT Solver

Decision/Branching heuristics

• Pick an unassigned variable

and set it to False/True

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

Yes

No

No

Yes

No

Yes

Conflict-Driven Clause-Learning 7



CDCL SAT Solver

Conflict analysis

• Find the root cause of

conflict

• Encode it as a clause and

add it back to the formula

Input Formula

Unit Propagation

Conflict?

Conflict Analysis Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

Yes

No

No

Yes

No

Yes

Conflict-Driven Clause-Learning 8



The CDCL(Crypto) Framework



Lost in Translation

• When encoding a constraint into SAT, some higher level

properties might be lost

• Example: consider a pseudo-Boolean constraint C : x+ y ≤ 0

• We trivially know: C → ¬x and C → ¬y.

• We can encode it using a half-adder

• sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

• Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

• No unit clause to propagate!

• “Better” encoding vs. “Better” Propagation

9



Lost in Translation

• When encoding a constraint into SAT, some higher level

properties might be lost

• Example: consider a pseudo-Boolean constraint C : x+ y ≤ 0

• We trivially know: C → ¬x and C → ¬y.

• We can encode it using a half-adder

• sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

• Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

• No unit clause to propagate!

• “Better” encoding vs. “Better” Propagation

9



Lost in Translation

• When encoding a constraint into SAT, some higher level

properties might be lost

• Example: consider a pseudo-Boolean constraint C : x+ y ≤ 0

• We trivially know: C → ¬x and C → ¬y.

• We can encode it using a half-adder

• sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

• Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

• No unit clause to propagate!

• “Better” encoding vs. “Better” Propagation

9



Lost in Translation

• When encoding a constraint into SAT, some higher level

properties might be lost

• Example: consider a pseudo-Boolean constraint C : x+ y ≤ 0

• We trivially know: C → ¬x and C → ¬y.

• We can encode it using a half-adder

• sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

• Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

• No unit clause to propagate!

• “Better” encoding vs. “Better” Propagation

9



Lost in Translation

• When encoding a constraint into SAT, some higher level

properties might be lost

• Example: consider a pseudo-Boolean constraint C : x+ y ≤ 0

• We trivially know: C → ¬x and C → ¬y.

• We can encode it using a half-adder

• sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

• Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

• No unit clause to propagate!

• “Better” encoding vs. “Better” Propagation

9



Lost in Translation

• When encoding a constraint into SAT, some higher level

properties might be lost

• Example: consider a pseudo-Boolean constraint C : x+ y ≤ 0

• We trivially know: C → ¬x and C → ¬y.

• We can encode it using a half-adder

• sum↔ x⊕ y, carry ↔ x ∧ y, and adding constraints

sum = 0, carry = 0.

• Resultant CNF: (¬x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x ∨ y)

• No unit clause to propagate!

• “Better” encoding vs. “Better” Propagation

9



Programmatic SAT

• Instrumenting a SAT solver with callbacks

• Extending functionality of propagation and conflict analysis

• Programmatic callbacks analyze the partial assignment

• Propagation callback

• Called after unit propagation

• Checks for implied literals that are missed by unit propagation

• Conflict analysis callback

• Called after propagation is done

• Checks if partial assignment cannot be extended to a full

solution

10



Programmatic SAT

• Instrumenting a SAT solver with callbacks

• Extending functionality of propagation and conflict analysis

• Programmatic callbacks analyze the partial assignment

• Propagation callback

• Called after unit propagation

• Checks for implied literals that are missed by unit propagation

• Conflict analysis callback

• Called after propagation is done

• Checks if partial assignment cannot be extended to a full

solution

10



Programmatic SAT

• Instrumenting a SAT solver with callbacks

• Extending functionality of propagation and conflict analysis

• Programmatic callbacks analyze the partial assignment

• Propagation callback

• Called after unit propagation

• Checks for implied literals that are missed by unit propagation

• Conflict analysis callback

• Called after propagation is done

• Checks if partial assignment cannot be extended to a full

solution

10



Programmatic SAT

• Instrumenting a SAT solver with callbacks

• Extending functionality of propagation and conflict analysis

• Programmatic callbacks analyze the partial assignment

• Propagation callback

• Called after unit propagation

• Checks for implied literals that are missed by unit propagation

• Conflict analysis callback

• Called after propagation is done

• Checks if partial assignment cannot be extended to a full

solution

10



Programmatic SAT

• Instrumenting a SAT solver with callbacks

• Extending functionality of propagation and conflict analysis

• Programmatic callbacks analyze the partial assignment

• Propagation callback

• Called after unit propagation

• Checks for implied literals that are missed by unit propagation

• Conflict analysis callback

• Called after propagation is done

• Checks if partial assignment cannot be extended to a full

solution

10



Programmatic SAT

Input Formula

Unit Propagation

Conflict?

Conflict Analysis

Programmatic

Propagation

New Reason

Clauses?

Programmatic

Conflict Analysis

New Conflict

Clauses?
Top Level?

Backjump

UNSAT

All Variables

Assigned?

Decision

SAT

No

YesNo

Yes

Yes

No

No

Yes

No

Yes

11



Case Studies



Hardware Fault Injection

• SHA-1 hash function

• Induce a fault in a target

register

• Using heat, EM, laser, ...

12



Hardware Fault Injection

• SHA-1 hash function

• Induce a fault in a target

register

• Using heat, EM, laser, ...

12



Hardware Fault Injection

• SHA-1 hash function

• Induce a fault in a target

register

• Using heat, EM, laser, ...

12



Algebraic Fault Analysis

• H = f0..79(IV,W0..79)

• This equation system will be

encoded into CNF.

• Fault model: Constraints on

δi.

H ′
i = f64..79(f0..63(IV,W0..63)⊕δi,W64..79)

13



Algebraic Fault Analysis

• Abstract away the common

parts

• Verification of the solution

will be needed

14



Algebraic Fault Analysis - Programmatic Approach

• Base SAT solver: MapleSAT

• Programmatic conflict analyzer

• Embedding the verification loop

• As soon as message word variables are set, they are ready to

be verified

• Early embedded check vs. Straightforward check after solving

completely

• Programmatic propagator

• Improving the propagation flow of multi-operand additions

• Generating reason clauses in each column addition when

output bits are missed

15



Algebraic Fault Analysis - Results

• Recovering

SHA-256

message bits

• 14.3x speed-up

on average

• 17 fewer faults

were needed

compared to the

previous works
��

�����

������

������

������

������

������

������

������

������

�� ��� ��� ��� ��� ����

�
��
�

�
��
�

��������������������������

��������
�����������������������

�����������������������������
��������������������������

16



Differential Cryptanalysis

• Analyzing how a difference at the input propagates to a

difference at the output.

• ∆x = x⊕ x′ → ∆y = y ⊕ y′

• Gathering statistical information about the differences (finding

bias/non-randomness).

• Differential Path: A trace of differentials over smaller steps in

the function

• Collision: a differential path with final difference equal to zero.

17



Differential Cryptanalysis

• Analyzing how a difference at the input propagates to a

difference at the output.

• ∆x = x⊕ x′ → ∆y = y ⊕ y′

• Gathering statistical information about the differences (finding

bias/non-randomness).

• Differential Path: A trace of differentials over smaller steps in

the function

• Collision: a differential path with final difference equal to zero.

17



Differential Cryptanalysis

• Analyzing how a difference at the input propagates to a

difference at the output.

• ∆x = x⊕ x′ → ∆y = y ⊕ y′

• Gathering statistical information about the differences (finding

bias/non-randomness).

• Differential Path: A trace of differentials over smaller steps in

the function

• Collision: a differential path with final difference equal to zero.

17



Differential Cryptanalysis

• Analyzing how a difference at the input propagates to a

difference at the output.

• ∆x = x⊕ x′ → ∆y = y ⊕ y′

• Gathering statistical information about the differences (finding

bias/non-randomness).

• Differential Path: A trace of differentials over smaller steps in

the function

• Collision: a differential path with final difference equal to zero.

17



Differential Cryptanalysis - Collision on SHA-256

• Guess-and-determine solvers:

• Very similar search approach to SAT solvers

• Dedicated propagators for differential propagation rules

• Dedicated branching heuristics

• State-of-the-art results on SHA-256 collision (31 steps)

• SAT-based approaches:

• Encoding bitwise differential behaviour only

• Prioritizing difference variables

• Limited representation power hence limited propagation power

• State-of-the-art: 24 steps

• Example rule: r = IF (x, y, z), - ← ---, x ← -xx.

• Full representation yields a blow up in size of the encoding

• An opportunity for Programmatic propagation

18



Differential Cryptanalysis - Collision on SHA-256

• Guess-and-determine solvers:

• Very similar search approach to SAT solvers

• Dedicated propagators for differential propagation rules

• Dedicated branching heuristics

• State-of-the-art results on SHA-256 collision (31 steps)

• SAT-based approaches:

• Encoding bitwise differential behaviour only

• Prioritizing difference variables

• Limited representation power hence limited propagation power

• State-of-the-art: 24 steps

• Example rule: r = IF (x, y, z), - ← ---, x ← -xx.

• Full representation yields a blow up in size of the encoding

• An opportunity for Programmatic propagation

18



Differential Cryptanalysis - Collision on SHA-256

• Guess-and-determine solvers:

• Very similar search approach to SAT solvers

• Dedicated propagators for differential propagation rules

• Dedicated branching heuristics

• State-of-the-art results on SHA-256 collision (31 steps)

• SAT-based approaches:

• Encoding bitwise differential behaviour only

• Prioritizing difference variables

• Limited representation power hence limited propagation power

• State-of-the-art: 24 steps

• Example rule: r = IF (x, y, z), - ← ---, x ← -xx.

• Full representation yields a blow up in size of the encoding

• An opportunity for Programmatic propagation

18



Differential Cryptanalysis - Collision on SHA-256

• Guess-and-determine solvers:

• Very similar search approach to SAT solvers

• Dedicated propagators for differential propagation rules

• Dedicated branching heuristics

• State-of-the-art results on SHA-256 collision (31 steps)

• SAT-based approaches:

• Encoding bitwise differential behaviour only

• Prioritizing difference variables

• Limited representation power hence limited propagation power

• State-of-the-art: 24 steps

• Example rule: r = IF (x, y, z), - ← ---, x ← -xx.

• Full representation yields a blow up in size of the encoding

• An opportunity for Programmatic propagation

18



Differential Cryptanalysis - Results

• Collision on round-reduced SHA-256

• Modified the starting differential path of [Pro16]

• Base solver: MapleSAT

• Programmatic Propagator: Implemented a subset of

differential propagation rules

• Programmatic conflict analyzer: Detects impossible

differentials

• Found collision for 25 rounds of SHA-256 using

MapleSAT(Crypto) in ∼3.5 hours

19



Conclusions

• A framework on top of CDCL SAT solvers to implement

cryptographic reasonings.

• Showcased the power of the framework in two cryptanalysis

tasks.

• A bridge between two ends of a spectrum:

• Performance of dedicated cryptanalysis tools

• Flexibility and search power of SAT solvers

• Beating state-of-the-art in some cases but still a long way to

match state-of-the-art in other cases

20



Thanks!

Questions?



References i

Glenn De Witte.

Automatic sat-solver based search tools for cryptanalysis.

2017.

Claudia Fiorini, Enrico Martinelli, and Fabio Massacci.

How to Fake an RSA Signature by Encoding Modular

Root Finding as a SAT Problem.

Discrete Applied Mathematics, 130(2):101–127, 2003.

Fabio Massacci.

Using Walk-SAT and Rel-SAT for Cryptographic Key

Search.

In IJCAI, volume 1999, pages 290–295, 1999.

22



References ii

Fabio Massacci and Laura Marraro.

Logical Cryptanalysis as a SAT Problem.

Journal of Automated Reasoning, 24(1-2):165–203, 2000.

Pawe l Morawiecki and Marian Srebrny.

A SAT-based Preimage Analysis of Reduced KECCAK

Hash Functions.

Information Processing Letters, 113(10):392–397, 2013.

Ilya Mironov and Lintao Zhang.

Applications of SAT Solvers to Cryptanalysis of Hash

Functions.

Theory and Applications of Satisfiability Testing-SAT 2006,

pages 102–115, 2006.

23



References iii

Vegard Nossum.

SAT-based Preimage Attacks on SHA-1.

2012.

Lukas Prokop.

Differential cryptanalysis with SAT solvers.

PhD thesis, University of Technology, Graz, 2016.

Aaron Tomb.

Applying Satisfiability to the Analysis of Cryptography.

https://github.com/GaloisInc/sat2015-crypto/blob/

master/slides/talk.pdf, 2015.

24

https://github.com/GaloisInc/sat2015-crypto/blob/master/slides/talk.pdf
https://github.com/GaloisInc/sat2015-crypto/blob/master/slides/talk.pdf


CDCL(T): SAT-Modulo-Theories

• Satisfiability for higher level logical formulas

• Abstract the given formula into a propositional one

• x2 < 0︸ ︷︷ ︸
A

∨x2 > 1︸ ︷︷ ︸
B

becomes A ∨B.

• Solve it using a SAT solver (e.g. set A to true).

• A theory solver checks if the assignment is a solution to the

original formula (and if not, why not).

• Here the T -solver can return the clause ¬A (i.e. x2 ≥ 0).

25



CDCL(T): SAT-Modulo-Theories

• Satisfiability for higher level logical formulas

• Abstract the given formula into a propositional one

• x2 < 0︸ ︷︷ ︸
A

∨x2 > 1︸ ︷︷ ︸
B

becomes A ∨B.

• Solve it using a SAT solver (e.g. set A to true).

• A theory solver checks if the assignment is a solution to the

original formula (and if not, why not).

• Here the T -solver can return the clause ¬A (i.e. x2 ≥ 0).

25



CDCL(T): SAT-Modulo-Theories

• Satisfiability for higher level logical formulas

• Abstract the given formula into a propositional one

• x2 < 0︸ ︷︷ ︸
A

∨x2 > 1︸ ︷︷ ︸
B

becomes A ∨B.

• Solve it using a SAT solver (e.g. set A to true).

• A theory solver checks if the assignment is a solution to the

original formula (and if not, why not).

• Here the T -solver can return the clause ¬A (i.e. x2 ≥ 0).

25



CDCL(T): SAT-Modulo-Theories

• Satisfiability for higher level logical formulas

• Abstract the given formula into a propositional one

• x2 < 0︸ ︷︷ ︸
A

∨x2 > 1︸ ︷︷ ︸
B

becomes A ∨B.

• Solve it using a SAT solver (e.g. set A to true).

• A theory solver checks if the assignment is a solution to the

original formula (and if not, why not).

• Here the T -solver can return the clause ¬A (i.e. x2 ≥ 0).

25



CDCL(T): SAT-Modulo-Theories

• Satisfiability for higher level logical formulas

• Abstract the given formula into a propositional one

• x2 < 0︸ ︷︷ ︸
A

∨x2 > 1︸ ︷︷ ︸
B

becomes A ∨B.

• Solve it using a SAT solver (e.g. set A to true).

• A theory solver checks if the assignment is a solution to the

original formula (and if not, why not).

• Here the T -solver can return the clause ¬A (i.e. x2 ≥ 0).

25



CDCL(T): SAT-Modulo-Theories

• Satisfiability for higher level logical formulas

• Abstract the given formula into a propositional one

• x2 < 0︸ ︷︷ ︸
A

∨x2 > 1︸ ︷︷ ︸
B

becomes A ∨B.

• Solve it using a SAT solver (e.g. set A to true).

• A theory solver checks if the assignment is a solution to the

original formula (and if not, why not).

• Here the T -solver can return the clause ¬A (i.e. x2 ≥ 0).

25


	Boolean SAT Solvers
	CDCL SAT Solvers

	The CDCL(Crypto) Framework
	Programmatic SAT Architecture

	Case Studies
	Algebraic Fault Attack
	Differential Cryptanalysis


